viernes, 19 de febrero de 2016

Construcciones antisísmicas


Introducción

Vivimos en un mundo donde predomina la curiosidad y el deseo de un desarrollo que revolucione nuestro contexto en general, lo que nos ciega ante nuestro propio avance que ya no está solo al alcance de la imaginación, se ha vuelto una realidad que se presenta de tal forma facilitándonos la vida y asiendo a esta más confortable. Es momento de comenzar a tomar en cuenta el auténtico esfuerzo del hombre por subsistir, no demos por desapercibidos aquellos verdaderos logros a los que hemos llegado en cuanto a las herramientas para este único fin, dejemos a un lado los posibles descubrimientos y vayámonos a las reales invenciones, ahí es donde nos percataremos de lo realmente magnifico que puede ser el pensamiento humano, hasta donde alcanza la creatividad del individuo por encontrar el bienestar que tanto desea obtener, es tiempo de apreciar aquellas maravillosas obras que no podríamos apreciar sin saber lo que nos desean transmitir, valorar lo que nos brindan, puesto a que no solo se trata de una simple infraestructura, sino más bien es como ya te habrás percatado audaz lector, nos referimos a un admirable ejemplo de cuán grande llega a ser la Ingeniería Civil y los métodos de construcción que de esta se derivan, entenderemos que el hombre no es el único que debe mantenerse de pie, es hora de conocer las imponentes construcciones antisísmicas.

Resumen

El texto trata en general de las construcciones antisísmicas, menciona algunos detalles para comprender mejor el porqué de las construcciones, toca puntos relacionados con el tema como lo son "sismos" y la manera en que afectan a las construcciones, mencionaremos algunos de los muchos beneficios que nos brindan este tipo de construcciones, haremos un ligero análisis en cuanto a sus características, la manera y/u observaciones a tomar en cuenta para su construcción, así mismo, también conoceremos algunos de los materiales principales que se deben incluir en toda obra antisísmica, también conoceremos ciertos aspectos de estos. Comprenderemos porque el uso de estas tecnologías y sabremos de situaciones en las cuales han actuado y como ha sido el resultado de dicha participación.
Monografias.com

Sismos

Definición del concepto sismo según la Real Academia Española: terremoto o sacudida de la tierra producida por causas internas
-Definición general de un sismo: Se denomina sismo o terremoto a las sacudidas o movimientos bruscos del terreno producidos en la corteza terrestre como consecuencia de la liberación repentina de energía en el interior de la Tierra o a la tectónica de placas. Esta energía se transmite a la superficie en forma de ondas sísmicas que se propagan en todas las direcciones. El punto en que se origina el terremoto se llama foco o hipocentro; este punto se puede situar a un máximo de unos 700 km hacia el interior terrestre. El epicentro es el punto de la superficie terrestre más próximo al foco del terremoto.
-Orígenes de un sismo: Suelen producirse al final de un ciclo denominado ciclo sísmico, que es el período de tiempo durante el cual se acumula deformación en el interior de la Tierra que más tarde se liberará repentinamente. Dicha liberación se corresponde con el terremoto, tras el cual, la deformación comienza a acumularse nuevamente.
Tipos de sismos:
-Volcánicos: directamente relacionados con las erupciones volcánicas. Son de poca intensidad y dejan de percibirse a cierta distancia del volcán.
-Tectónicos: originados por ajustes en la litosfera. El hipocentro suele encontrarse localizado a 10 o 25 kilómetros de profundidad, aunque algunos casos se llegan a detectar profundidades de hasta 70 kilómetros y también pueden ser más superficiales.
-Batisismos: su origen no está del todo claro, caracterizándose porque el hipocentro se encuentra localizado a enormes profundidades (300 a 700 kilómetros), fuera ya de los límites de la litosfera. Se pueden deber a transiciones críticas de fase en las que materiales que seducen se transforman bruscamente, al alcanzarse cierto valor de presión, en otros más compactos.

¿Cómo afecta un sismo a una edificación?

Un sismo no daña a las edificaciones por impacto como lo haría un equipo de demolición, básicamente lo daña la fuerza de la inercia que se genera a partir de la vibración de la masa del edificio. La forma y dimensiones del edificio así como su masa, afectan al edificio.
El peso de los edificios es lo que produce el colapso, ante un sismo los edificios caen verticalmente, es poco común que caigan hacia los lados. Las fuerzas laterales tienden a doblar y quebrar las columnas y muros, la acción de la gravedad sobre la debilitada estructura produce el colapso.
La forma de los edificios también puede influir en la respuesta de estos ante un sismo, una edificación es un conjunto de partes unidas entre sí, cada una está sujeta a "esfuerzos" horizontales y verticales por estar unidas con el resto de la estructura.
En cada edificio el movimiento del suelo afecta d diferente forma, la altura influirá con la fuerza a la que estará sometida la edificación. La proporción es una de las características más importante para cada edificio, para los edificios altos la altura por la esbeltez se verá limitado a 4 por 1.
Los edificios demasiado esbeltos al estar sujetos a la fuerza de un sismo tienden a caer de lado, presentan varias complicaciones al evaluar las fuerzas a las que estarán sujetas las columnas encontradas en el perímetro del edificio.
Monografias.com

¿Qué es una construcción antisísmica?

La construcción y estructuras antisísmicas son aquellas que nos va a admitir soportar movimientos telúricos con mucha mayor superioridad de resistencia, para lo cual, los ingenieros encomendados a la construcción de la vivienda han tomado en cuenta algunos primordiales detalles para hacerlas más invulnerables a estas circunstancias.
La construcción antisísmica comprende todas las edificaciones e infraestructuras construidas para soportar movimientos sísmicos sin desplomarse.
A través de la ingeniería antisísmica se estudia el diseño sismo resistente para construir un edificio resistente y no rígido, conceptos que se confunden con mucha frecuencia.
Monografias.com

Elementos para una construcción antisísmica


lunes, 15 de febrero de 2016

Influencia del sistema de aislación sísmica en la respuesta de los puentes

El objetivo de un sistema de aislación sísmica es proporcionar medios adicionales de disipación de la energía, reduciendo así la aceleración transmitida hacia una superestructura. Con la finalidad de demostrar la efectividad de la aislación sísmica y comprender el comportamiento de los puentes con aislación sísmica, se consideró un puente de tablero continuo de tres tramos construidos en hormigón armado. Se modeló el puente como un modelo discreto y los desplazamientos relativos del aislador sísmico son cruciales desde el punto de vista del sistema de aislación y juntas de separación a nivel del estribo. Aquí, se presentan los sistemas de control pasivo incluyendo los resultados de algunos importantes ensayos experimentales.

 

1. Introducción

Durante las últimas dos décadas, se han estado usando sistemas de aislación sísmica para mejorar el comportamiento sísmico de los puentes y reducir el grado de daño al absorber una cantidad significativa de la energía inducida por un sismo y transmitida a la estructura. La Figura 1 muestra un puente típico de tablero continuo de multi-tramos con aisladores en el que se han usado aparatos especiales de aislación en lugar de los sistemas de apoyo convencionales.

Estos apoyos protegen la subestructura restringiendo la transmisión de la aceleración horizontal y disipando la energía sísmica a través de la amortiguación. Durante las dos últimas décadas, se han realizado esfuerzos considerables para desarrollar mejores procedimientos de diseño de aisladores sísmicos para los nuevos puentes y directrices o guías para la modificación de los puentes existentes. La conveniencia de un arreglo específico y el tipo de sistema de aislación dependerá de diversos factores incluyendo el vano, número de tramos continuos, sismicidad de la región, frecuencias de vibración de los componentes relativamente severos del sismo, mantenimiento y reemplazo de los sistemas.

Se presenta un estudio comparativo de los puentes sísmicamente aislados contra la excitación sísmica. El estudio trata brevemente las características dinámicas de los aparatos para aislación de base, haciendo énfasis en la variación del tiempo para el corte de la base y desplazamiento de los apoyos a fin de comprender el comportamiento de los puentes sísmicamente aislados mediante una comparación entre los puentes aislados y no aislados.

Figura 1. Puente con aislación sísmica

2. Ecuación de movimiento en términos de energía

La Ecuación de movimiento para una estructura símicamente aislada, en términos de desplazamientos, está dada como en (1):

(1)

Donde M es la matriz de la masa, C es la matriz de la constante de amortiguación y K es la matriz de rigidez. La integración respecto del movimiento de la Ecuación (1) que representa el movimiento en términos de la resistencia, nos entrega la ecuación del equilibrio dinámico en términos de la energía entregada, de la siguiente manera:

(2)

Donde:

EI (t) = energía cedida por el sismo.

EK(t) = energía cinética.

ED(t) = energía disipada por la amortiguación estructural.

E s (t) = energía potencial almacenada.

E H (t) = energía disipada por el comportamiento histerético de la amortiguación del aislador

3. Comportamiento del sistema de aislación con núcleo de plomo (LRB)

El sistema de aislación elastomérica con núcleo de plomo (LRB) está conformado por un conjunto de láminas de elastòmero y de acero alternadas, unidas unas con otras alrededor de un centro de plomo, inserto en el centro de las láminas. El cilindro de plomo central controla los desplazamientos laterales de la estructura y absorbe una parte de la energía sísmica. El elastòmero del centro de plomo le confiere a este dispositivo un comportamiento histerético importante. Este comportamiento histerético se representa en la aproximación bilineal ilustrada por la Figura 2.

Figura 2. Aproximación bilineal de un comportamiento de la ley histerética expresada en fuerza-desplazamiento

Los parámetros de la aproximación bilineal que expresan el comportamiento de la ley de histerética son:

Dy: El desplazamiento de fluencia con:

(3)

D: El desplazamiento de diseño del aislador elastomérico con centro de plomo (LRB)

Eh: La energía disipada por el ciclo correspondiente al desplazamiento de diseño, igual al área total del ciclo de histéresis, que es dada por la siguiente fórmula:

(4)

Fy: La fuerza de fluencia en una carga monótona

Q: La fuerza, correspondiente al desplazamiento nulo durante un ciclo de carga, representa además la resistencia característica y la fuerza de fluencia de la barra de plomo para el LRB,

(5)

Fmax: La fuerza de cortante máxima correspondiente al desplazamiento de diseño D

K1 : La rigidez elástica para una carga monótona también igual a la rigidez de descarga en un ciclo de carga, con:

(6)

K2: La rigidez post elástica, donde:

(7)

Keff: La rigidez efectiva del LRB, que está dada por la siguiente Ecuación:

(8)

Bef: El factor de amortiguación efectiva del sistema de aislación sísmica de base, que se expresa como:

(9)

4. Descripción del puente con aislación sísmica y la excitación sísmica

Con el fin de demostrar la efectividad de la aislación sísmica, se consideró un puente de tablero continuo de tres tramos construidos en hormigón armado. Las propiedades del tablero del puente y de las pilas se encuentran en la Tabla 1.

Estas propiedades corresponden al puente estudiado por Wang et al. (1998) usando un sistema de aisladores deslizantes. Como se muestra en la Figura 3, el puente se modeló como un modelo discreto. El periodo de tiempo fundamental de las pilas es de 0.1 seg. aproximadamente y el periodo de tiempo correspondiente del puente sin aislación resultó ser de 0.5 seg., en ambas direcciones longitudinal y transversal. La amortiguación en el tablero y pilas se considera como el 5% del crítico en todos los modos de vibración. Además, el número de elementos considerados en el tablero y pilas del puente es de 10 y 5, respectivamente. Las respuestas de interés para el sistema del puente en consideración (en ambas direcciones longitudinal y transversal) son el corte de base en las pilas y el desplazamiento relativo de los aisladores elastoméricos en los estribos. El corte de base en la pila es directamente proporcional a las fuerzas ejercidas en el sistema del puente debido al movimiento telúrico. Por otra parte, los desplazamientos relativos de los apoyos del aislador sísmico son cruciales desde el punto de vista del diseño del sistema de aislación y de las juntas de separación a nivel del estribo.

Tabla 1. Propiedades del tablero y pilas del puente

Figura 3. Modelación matemática de los puentes con aislación sísmica

5. Resultados y discusión

Las Figuras 4a, 4b y 4c muestran la variación en el tiempo del corte de base en la pila y el desplazamiento relativo de los aisladores sísmicos del puente usando los sistemas de aislación LRB, N-Z y FPS. El sistema LRB está diseñado para proporcionar un periodo de aislación de 2 seg (basado en condiciones de tablero y pilas rígidos) y un coeficiente de amortiguamiento del 10%. El periodo de aislación para los sistemas N-Z y FPS es considerado como de 2.5 seg. La resistencia a fluencia del sistema N-Z se considera como un 5% del peso del tablero y el coeficiente de fricción del sistema FPS se considera como un 0.05. El sistema se sometió al movimiento telúrico sucedido en Robe el año 1995, en las direcciones longitudinal y transversal. El corte de base en las pilas se redujo significativamente (alrededor del 80 al 90%) para el sistema con aislación en comparación con el sistema sin aislación, en ambas direcciones del puente. Esto indica que los sistemas de aislación son bastante efectivos para reducir la respuesta telúrica del sistema del puente. El pico de desplazamiento máximo del aislador es de 32.87; 27.65 y 31.50 para los sistemas LRB, N-Z y FPS, respectivamente en la dirección longitudinal del puente.

Figura 4. Variación en el tiempo del corte de base y desplazamiento del apoyo del puente con aislación del tipo FPS, durante el sismo de Kobe, 1995

6. Conclusiones

Este estudio arroja cierta luz sobre las recientes y más económicas técnicas para proteger los puentes contra diversos daños o colapso provocados por las fuerzas sísmicas y para la evaluación de la efectividad del aislador sísmico en la construcción de puentes, que nos lleva a las siguientes conclusiones:

-    Los daños producidos en los puentes durante los grandes sismos han ayudado a los ingenieros a comprender su comportamiento sísmico y a identificar las diversas patologías y sus causas.

-    El diseñador debe comprender la forma en que se comportarán las diferentes formas estructurales en un sismo real y detallar la estructura teniendo estos aspectos en consideración.

-    Las nuevas tecnologías, especialmente los aisladores sísmicos para puentes, ofrecen alternativas atractivas que permitirán realizar ciertas economías a corto y largo plazo; además, esta disciplina está supervisada por códigos y normas.

-    La protección sísmica es especialmente compleja: se debe tener en consideración un gran número de factores y su tratamiento debe ser muy acucioso; los cambios como tales, intentan ser aún más eficientes para preservar la vida humana.

-    Investigaciones sobre la efectividad de la aislación sísmica para los puentes sesgados u oblícuos y puentes curvos en plano y elevación.

-    A pesar de las condiciones favorables y del progreso de las investigaciones realizadas durante los últimos años, la cantidad de nuevas tecnologías asísmicas en el ámbito de los puentes aún es restringida.

-    Por último, aún existen factores naturales al azar, en consecuencia, es imposible lograr una seguridad total.

Via: Kaoutar Zellat1*, Tahar Kadri*

* University of Mostaganem, Mostaganem. ALGERIA

domingo, 25 de octubre de 2015

Comparación de tres metodologías de análisis sísmico de túnel NATM en suelos finos de Santiago

Introducción
Los análisis sísmicos de túneles han sido tradicionalmente abordados mediante expresiones analíticas para geometrías sencillas que no incluyen las secuencias constructivas ni historiales de esfuerzos (Wang, 1993; Penzien y Wu, 1998; Penzien, 2000). Últimamente, algunos softwares de análisis geotécnico han entregado herramientas para la resolución de problemas complejos, permitiendo incorporar las variaciones en los historiales de tensiones, métodos constructivos, secuencias de excavación y solicitaciones sísmicas a través de registros de aceleraciones.
Este artículo presenta un estudio comparativo de 3 métodos de análisis sísmico para un túnel NATM construido en suelos finos del noroeste de Santiago. Se describe la metodología, consideraciones particulares y los parámetros empleados en cada caso. Se indican las complejidades y los tiempos computacionales requeridos para el desarrollo de cada metodología. Finalmente, se presenta un análisis comparativo de los resultados obtenidos: esfuerzos sísmicos en revestimiento del túnel y cálculo de espesor de revestimiento.
Geometría del túnel y propiedades del suelo de fundación
La geometría del túnel se muestra en la Figura 1. La secuencia constructiva considera 3 secciones principales:side drift I, sección central, side drift II y 9 subsecciones que se enumeran en la misma figura. La metodología utilizada es acorde a los principios del método NATM (New Austrian Tunnelling Method) y simula las secuencias de excavación en tres etapas constructivas: bóveda, banco y contrabóveda; con desfase entre etapas y la aplicación de revestimiento estructural. Entre cada frente de avance de sidedrift, hay un desfase de 10 m, así también de la pared central. El nivel de riel del túnel se encuentra a una profundidad de 22 m del nivel de terreno y la clave del túnel se encuentra a 16 m de profundidad. La sección del túnel abarca un área aproximada de 190 m2.

Figura 1: a) Geometría (dimensiones en cm) y b) secuencia constructiva
del túnel
Se considera un túnel construido en el sector de suelos finos del noroeste de Santiago, al cual se le han asignado las propiedades geotécnicas presentadas en la Tabla 1. El módulo de deformación ha sido considerado lineal aumentando en profundidad, también se han considerado distintos valores de cohesión y coeficiente de empuje en reposo in situ K0 para dos distintos estratos de suelo.
Tabla 1: Propiedades de los materiales (ARCADIS, 2014)

Z: profundidad medida desde la superficie en m
Dj: profundidad sello fundación en m, B: dimensión menor de
estructura en m
Solicitación sísmica
Con el fin de simular la solicitación sísmica, se utilizan dos procedimientos: desangulación sísmica y análisis dinámico con registro de aceleraciones. Para la desangulación sísmica, la metodología empleada se basa en las recomendaciones del Manual de Carreteras (2014), que se sustentan en la propuesta de Kuesel (1969) para el diseño sísmico del metro de San Francisco. En este estudio se ha considerado una desangulación θs de 1.1·10-3rad, obtenida de los valores tabulados en el Manual de Carreteras (2014) para un rango de compresión no confinada qu entre 20 y 40 kPa, para zona sísmica con ao= 0.4g.
El análisis dinámico se basó en uno de los registros de aceleraciones del terremoto de Chile, ocurrido el 27 de Febrero del 2010, que tuvo una magnitud momento Mw de 8.8. El sismo fue subductivo tipo thrust con epicentro marítimo frente a la localidad de Cobquecura, Región del Bío Bío (Saragoni y Ruíz, 2012). El registro de aceleraciones fue obtenido de la Red Nacional de Acelerógrafos de la Universidad de Chile (RENADIC). Corresponde a un registro de superficie con componente horizontal, obtenido en una estación ubicada en Maipú, sobre depósitos de ceniza volcánica denominados comúnmente como "Pumicita". Las principales características del registro de aceleraciones se indican en la Tabla 2.
Tabla 2: Principales características sísmicas registro aceleraciones
terremoto 2010, estación Maipú (Saragoni y Ruíz, 2012)

La Figura 2 presenta las componentes de aceleraciones, velocidades y desplazamientos del registro utilizado. El registro ha sido sometido a corrección de línea de base. La Figura 3 presenta los espectros de Fourier y pseudo-aceleración para un amortiguamiento del 5%.

Figura 2: Registros de aceleración, velocidad y desplazamiento en función del tiempo.
Sismo 27F2010, estación Maipú

Figura 3: Espectro de Fourier y espectro de respuesta de aceleraciones
(5% de amortiguamiento)

miércoles, 4 de marzo de 2015

Efectos estructurales del megaterremoto de Chile

 

 

Un nuevo terremoto ocurrió en el norte Chile a las 20.46 hora local del martes 1 de abril de 2014, de magnitud 8,2 en la escala de Richter y de larga duración. Esta noticia sirve de nexo para analizar el megaterremoto que tuvo lugar en el 2010. En efecto, el Terremoto de Chile de 2010 fue un sismo ocurrido a las 03:34:08 hora local (UTC-3), del sábado 27 de febrero , que alcanzó una magnitud de 8,8 MW. El epicentro se ubicó en el Mar chileno, frente a las localidades de Curanipey Cobquecura, cerca de 150 kilómetros al noroeste de Concepción y a 63 kilómetros al suroeste de Cauquenes, y a 30,1 kilómetros de profundidad bajo la corteza terrestre. El sismo tuvo una duración de 3 minutos 25 segundos, al menos en Santiago y en algunas zonas llegando a los 6 minutos. Fue percibido en gran parte del Cono Sur con diversas intensidades, en lugares como Buenos Aires y São Paulo por el oriente.  Las víctimas llegaron a un total de 525 fallecidos. Cerca de 500 mil viviendas están con daño severo y se estiman un total de 2 millones de damnificados, en la peor tragedia natural vivida en Chile desde 1960. El sismo es considerado como el segundo más fuerte en la historia del país y el sexto más fuerte registrado por la humanidad. Sólo es superado a nivel nacional por el cataclismo del terremoto de Valdivia de 1960, el de mayor intensidad registrado por el ser humano mediante sismómetros. El sismo chileno fue 31 veces más fuerte y liberó cerca de 178 veces más energía que el devastador terremoto de Haití ocurrido el mes anterior, y la energía liberada es cercana a 100.000 bombas atómicas como la liberada en Hiroshima en 1945.

Este terremoto causó graves daños en las edificaciones del centro del país.  Se ha visto en la práctica el funcionamiento sísmico del universo de edificaciones existentes en la zona, en todos sus sistemas de estructuración, materiales y usos. En lo que compete a la Ingeniería Estructural ha sido un tiempo de aprendizaje, de observación de los distintos tipos de fallas, del comportamiento variado de los materiales y también de los defectos constructivos. Ha generado la necesidad de confeccionar un catastro de las edificaciones, basándose en su daño estructural, estudiar edificios completamente colapsados, otros que han quedado con serios problemas estructurales y aquéllos que mediante reparaciones menores, podrán seguir siendo habitados. Las edificaciones que requieran ser demolidas, precisan la realización de proyectos de ingeniería, la disposición de importantes recursos económicos y técnicos, y medidas de seguridad extremas para salvaguardar a la población. Este escenario obliga a poner en ejercicio las diferentes técnicas de reparación, de acuerdo a los distintos materiales de construcción y sobre la base de las tecnologías existentes. El objetivo planteado ha sido darles nuevamente las características de resistencia que eviten su colapso ante nuevas solicitaciones sísmicas.

A continuación os paso un vídeo realizado por la Universidad Politécnica de Madrid donde Richard Leonardo Zapata Garrido explica este terremoto y sus consecuencias desde el punto de vista ingenieril. Espero que os guste y os sea útil. video