Mostrando entradas con la etiqueta Aisladores Sismicos. Mostrar todas las entradas
Mostrando entradas con la etiqueta Aisladores Sismicos. Mostrar todas las entradas

martes, 24 de febrero de 2015

Desempeño sísmico de un pórtico con disipadores de energía pasivos de placas ranuradas de acero

RESUMEN

En este artículo se evalúan dos tipos de disipadores de energía pasivos histeréticos metálicos (placas ranuradas de acero). Estos dispositivos son de bajo costo y de fácil construcción e instalación. Con ensayos en mesa vibratoria se estudió el desempeño sísmico de tres modelos estructurales: un pórtico sin disipadores de energía y dos pórticos con dos tipos de placas ranuradas de acero. Los modelos fueron instrumentados con acelerómetros, galgas extensométricas y deformímetros; y fueron sometidos a dos tipos de señales sísmicas: un sismo regional y un sismo de campo cercano. Los resultados de los ensayos de laboratorio sugieren que los pórticos con las placas ranuradas de acero tienen hasta un 90% menos de distorsión de entrepiso que el pórtico sin rehabilitación. Esto se debe a que las placas ranuradas de acero disipan una gran parte de la energía suministrada por los sismos y los daños sobre la estructura de soporte se minimizan.

1. Introducción y justificación

Cuando los movimientos de un terremoto actúan sobre una estructura, pueden afectar gravemente los elementos estructurales dado que son los que absorben la energía de entrada del sismo. Este tipo de daños resultan en procesos complicados de reparación y muchas veces la estructura puede quedar restringida en cuanto a ocupación o uso Karavasilis, et al. (2012).

De allí se deriva la necesidad de desarrollar técnicas o métodos de rehabilitación estructural para edificaciones existentes, que en Colombia ha venido cobrando importancia en las últimas tres décadas. Esta necesidad se justifica en dos aspectos: la mayoría de ciudades de Colombia se encuentran ubicadas en zonas de peligro sísmico intermedia y alto; y por otro lado, muchas de las edificaciones existentes no fueron diseñadas para soportar cargas sísmicas Oviedo J. y Duque M. (2009).

A pesar de que han surgido en los últimos años técnicas de rehabilitación sísmica de edificaciones existentes mediante el aumento de la capacidad de disipación de la energía; difieren de la premisa tradicional de rehabilitación que se ha impuesto en Colombia: aumento de la rigidez y la resistencia de las edificaciones principalmente con el refuerzo con muros estructurales de concreto.

Con base en Lo anterior se vio la necesidad de realizar una innovación en Colombia a través de la adaptación de un dispositivo de disipación de energía de bajo costo y fácil fabricación con el fin de usarlo en la rehabilitación sísmica de pórticos de concreto existentes, como se presenta en las referencias Hossain et al. (2011) y Marín J. y Ruiz D. (2005).

Específicamente se trata de disipadores basados en placas con ranuras, que posicicionados estratégicamente en las edificaciones, concentran el daño y Ia disipación de energía (por histéresis) en los mismos dispositivos disminuyendo los daños en los elementos estructurales.

2. Disipación de la energía inducida por un sismo

En una estructura sometida a movimientos sísmicos, la ley de conservación de energía convierte la energía de entrada en energía elástica y en energía disipada Medeot R. (2000), como se observa en la Ecuación 1:

(1)

Donde:

E1: Energía de entrada.

Ep: Energía potencial.

EK: Energía cinética.

Eß: Energía por amortiguamiento viscoso equivalente.

EH: Energía por deformación histerética.

Se muestra en la Figura 1, un análisis del balance energético obtenido para un sistema inelástico de un grado de libertad sometido a un sismo, con un periodo estructural de 0.3 segundos y con una fuerza de fluencia del 20% de su peso. El amortiguamiento con respecto al crítico es del 3%.

Figura 1. Balance energético de un oscilador simple inelástico sometido a una señal sísmica

 

En la Figura 1 se observa cómo al inicio, toda la energía se transforma en Energía Elástica (EE) bien sea en energía cinética o en deformaciones elásticas (no permanentes). Pero cuando la energía de entrada se hace mayor, aproximadamente el 70% de la energía se disipa por histéresis (EH) y la restante se disipa por amortiguamiento intrínseco de la estructura (Eb).

En un pórtico EH aparece cuando los esfuerzos generados por el sismo en los elementos estructurales superan la región elástica de los materiales y por lo tanto la estructura recurre a la región inelástica. A partir de ese momento parte de la energía inducida por el sismo se traduce en deformaciones inelásticas y en daño. Esto se hace evidente en fenómenos como la fisuración, la fluencia y la aparición de rótulas plásticas.

El objetivo de la tecnología de disipación de energía propuesta es mantener este gran porcentaje de disipación de energía por histéresis, pero reduciendo los daños en los elementos estructurales. Para ello se propone un sistema que canaliza la energía y los daños hacia dispositivos que aprovecha la histéresis de placas con ranuras hechas de acero con una gran capacidad de ductilidad a la deformación unitaria.

3. Disipadores pasivos de energía histeréticos metálicos de placas con ranuras

Actualmente en el mundo existe una gran variedad de dispositivos disipadores de energía sísmica que pueden ser de tipo activo, pasivo y/o semi-activos. En la Figura 2 se ilustra las diferentes técnicas de disipación de energía, y se hace énfasis en los disipadores de energía histeréticos pasivos metálicos que son precisamente el tipo de dispositivos que se estudiarán en el presente documento.

Figura 2. Cuadro conceptual de disipación de energía

 

Los sistemas de disipación pasiva a diferencia de los otros sistemas, se basan en la no dependencia de una fuente de energía para trabajar. Estos sistemas resultan en una estrategia de mitigación más económica a comparación con los otros sistemas y su implementación tiene las siguientes ventajas Sadek et al. (2003):

• Los disipadores pasivos disminuye la respuesta de la estructura ante cargas externas dado al aumento en su amortiguamiento y rigidez.

• Los disipadores absorben gran parte de la energía actuante del sismo, evitando mayores daños en el sistema estructural del edificio. Normalmente la mayoría de estos daños se presentan en los disipadores lo que puede traducirse en un menor costo de reparación ya que estos son reemplazables Symans M., etal. (2008).

Los dispositivos pasivos por fluencia absorben parte de la energía que se genera en la estructura a través de ciclos de histéresis, evitando daños estructurales importantes. Esta energía que reciben los dispositivos hace que fluyan y en el peor de los casos hace que se presente la falla del dispositivo, pero no de los elementos estructurales de la edificación. De acuerdo con Xua Z. et al. (2007), incluso para condiciones críticas como movimientos sísmicos en campo cercano, los disipadores por fluencia pueden reducir simultáneamente el desplazamiento, la aceleración y la energía que deben soportar los elementos estructurales.

Los disipadores histeréticos estudiados en el presente trabajo (Disipadores tipo placas con ranuras) se caracterizan porque la disipación de la energía ocurre por la fluencia del acero, provocado por los desplazamientos relativos en el dispositivo Karavasilis et al. (2012). Este comportamiento puede ser modelado mediante relaciones histeréticas fuerza-desplazamiento. Sus ventajas radican en su comportamiento estable, buena resistencia a factores ambientales y de temperatura.

Las placas ranuradas en acero se ubican en el mismo plano del pórtico a intervenir (Figura 3), por lo tanto trabajan normalmente a fuerzas cortantes.

Figura 3. Disipador de energía tipo placa con ranuras sometida a esfuerzos cortantes

 

Durante los años de desarrollo de este tipo de disipador, se ha estudiado tanto las posibles localizaciones de la platina en la estructura como el tipo de ranuras en las mismas (ranuras circulares, ovaladas, poligonales).

Para garantizar el desempeño y evitar concentraciones de esfuerzos en puntos indeseados de la platina con ranuras, investigadores como Benavent A., Hirishi A. (1999), Kunisue A., Koshika N. y Kurokawa Y. (2000), Reyes J. (2001), Wada A., Huang Y. y Iwata M. (2000), Marín J. y Ruiz D. (2005), Fuentes R., Martínez M. y Ruiz D. (2005), Chan R. y Albermani F. (2008), Chan R., Albermani F. y Williams M. (2009), Karavasilis T., Dimopoulos A. y Hale E. (2012), Chan R., Albermani F. y Kitipornchai S. (2013), Saffari H., Hedayat, A. y Poorsadeghi N. (2013), Ghabraie K., et. al (2010), Oh S., Kim Y. y Ryuc H. (2009) han propuesto diferentes tipos de disipadores con altos niveles de amortiguamiento histerético equivalente y con ciclos de histéresis muy estables.

Los disipadores de energía histeréticos pasivos metálicos de placas con ranuras tienen bajo costo dada la naturaleza del material y la facilidad en fabricación en talleres de metalmecánica. Estos aspectos son muy importantes para países en vías de desarrollo.

4. Caracterización física y mecánica de los disipadores histeréticos metálicos bajo estudio

El diseño de los disipadores es similar a los establecidos por Marín J. y Ruiz D. (2005) y por Fuentes R., Martínez M. y Ruiz D. (2005), quienes se basaron en los trabajos de Reyes J. (2001), Hanson R. y Tsu Soong (2001) y Kunisue A., Koshika N. y Kurokawa Y. (2000).

Marín J. y Ruiz D. (2005) y Fuentes R., Martínez M. y Ruiz D. (2005) trabajaron sobre disipadores a escala 1:2; sin embargo para los ensayos en mesa vibratoria que se presentan en este documento la escala escogida fue de 1:3 por lo que las dimensiones establecidas por los autores originales fueron modificadas por el factor de escala. En ambos casos el acero usado fue A-36. En Marín J. y Ruiz D. (2005) se propuso una placa ranurada conformada por 6 columnas y en la referencia Fuentes R., Martínez M. y Ruiz D. (2005) se propuso un disipador con 6 agujeros circulares. En la Figura 4 se muestra el esquema básico de ambos disipadores con las dimensiones de los mismos a la escala 1:3 que será usada en el presente estudio. El acero usado para la fabricación de estas placas ranuradas fue ASTM-A36. Se incluyen en cada disipador seis agujeros adicionales que servirán para su vinculación a la estructura a rehabilitar. El espesor de estos disipadores fue de 3.2 mm.

Figura 4. Dimensiones de disipadores histeréticos con placas ranuradas a) de 6 columnas Marín J. y Ruiz D. (2005) y b) con 6 agujeros circulares Fuentes R., Martínez M. y Ruiz D. (2005)

 

Es importante mencionar que previo a las pruebas experimentales, se realizó un modelo numérico en donde se pudo determinar que las rótulas plásticas del pórtico a rehabilitar se generaban en las placas ranuradas de laFigura 4 antes que en los elementos estructurales.

Para caracterizar el material implementado para la fabricación de los disipadores se realizaron pruebas de tensión y se determinó que el esfuerzo de fluencia del material era de 254 MPa y el esfuerzo de rotura de 365 MPa. La deformación unitaria máxima del material a la rotura fue de 1 7.5% (mm/mm).

Para obtener las propiedades mecánicas de los disipadores de placas ranuradas de la Figura 4, se diseñó y construyó un marco a través del cual fue posible ensayar simultáneamente dos disipadores de energía. Esta prueba es una adaptación de Ia referencia Reyes J. (2001). En esta prueba experimental se transforman las cargas axiales de una máquina universal de ensayos en una serie de fuerzas cortantes aplicadas en el plano de los disipadores, como las mostradas en la Figura 3. Se instalaron deformímetros para determinar Ia curva fuerza vs. desplazamiento.

Cada par de disipadores fue sometido a ciclos de carga y descarga sin recarga controlados por deformación (ensayos seudoestáticos). Con base en las mediciones realizadas se establecieron las características básicas del comportamiento de los disipadores, como lo son las cargas y deformaciones de fluencia, la rigidez elástica y la inelástica. En la Figura 5 se muestra el montaje de la prueba experimental y el estado de los disipadores al finalizar el ensayo; en donde es evidente que las placas ranuradas se plastificaron.

Figura 5. Montaje del ensayo de caracterización mecánica del disipador con placas ranuradas

 

Los datos de la prueba experimental se adaptaron a un modelo bilineal, que es el más recomendado para disipadores metálicos de comportamiento histerético de acuerdo con Marín J. y Ruiz D. (2005) y Hossain et al. (2011). En la Figura 6 se muestran los resultados experimentales con los datos teóricos de fluencia, que fueron determinados con modelos por elementos finitos (modelo constitutivo elastoplástico).

Figura 6. Curvas experimentales de fuerza cortante vs. desplazamiento en el plano de los disipadores de energía evaluados

 

5. Ensayos en mesa vibratoria

Los ensayos se realizaron en la mesa vibratoria del Laboratorio de Pruebas y Ensayos de la Pontificia Universidad Javeriana. El sistema consiste en una mesa accionada por un actuador dinámico de 100 kN de capacidad de carga que tiene un recorrido total de 250 mm (+/-125 mm) en dirección uniaxial. La plataforma de la mesa vibratoria es cuadrada con 1.5 m de lado y el conjunto actuador-mesa puede generar aceleraciones hasta de 5.0 g en modelos estructurales hasta de 15 kN de peso.

5.1 Pórtico en acero a estudiar

El pórtico en acero está construido a una escala de 1:3, constituído por cuatro columnas distribuidas en tres niveles. La altura entrepisos es de 75 centímetros para una altura total de 2.25 metros. La planta de la estructura es cuadrada de 1.30 m de lado y en cada nivel hay una estructura tipo parrilla en donde se ubica la masa del sistema. Los perfiles, tanto de vigas como de columnas, son tubulares de sección cuadrada de 30 mm de lado y 2.5 milímetros de espesor hechos con acero A36. Las uniones del pórtico son soldadas.

Los modelos fueron instrumentados con 4 galgas extensométricas, 4 acelerómetros sísmicos (uno por piso) y 4 deformímetros electrónicos tipo LVDT (uno por piso). Se usó un sistema de adquisición de datos registrando para cada uno de los 12 canales 2000 datos por segundo. Se registró también el desplazamiento y la fuerza generada por el actuador dinámico. Con los desplazamientos de cada uno de los pisos se determinó la distorsión de entrepiso como porcentaje de la altura (deriva sísmica) que es el valor que en la literatura técnica y científica se relaciona con los niveles de daño y con la efectividad de los dispositivos de disipación de energía pasivos.

El pórtico fue ensayado con y sin la rehabilitación con los dos tipos de disipadores mostrados en la Figura 4. Estos dispositivos fueron instalados en los ejes alineados con la dirección de aplicación del movimiento sísmico. Se instalaron dos disipadores en cada nivel de tal forma que los dos pórticos planos en dirección de la aplicación del movimiento tenían 3 disipadores cada uno para un total de 6 disipadores en el pórtico espacial. En la Figura 7 se muestra el pórtico rehabilitado con disipadores de energía de placas ranuradas con 6 agujeros circulares. Como parte del diseño experimental se desarrollaron modelos numéricos no lineales para el pórtico con y sin los disipadores en un programa de elementos finitos. Con estos modelos se validó que la ubicación, el tamaño y la geometría de los disipadores de energía fueran adecuados para mejorar el comportamiento sísmico del pórtico.

Figura 7. Imagen de pórtico rehabilitado con placas ranuradas con 6 agujeros circulares

 

Según las condiciones de diseño para disipadores de energía histeréticos pasivos metálicos de placas con ranuras, se requiere de un montaje a base de riostras que otorguen una conexión rígida para que la energía de entrada al sistema se concentre en los disipadores y no en los elementos portantes. La instalación de cada uno de los disipadores al pórtico se realizó mediante dos riostras. Cada riostra estaba conformada por 2 ángulos de aletas iguales de 50 mm de lado y 6.35 mm de espesor para un total de 4 ángulos por disipador.

5.2 Sismos usados

Se utilizaron señales sísmicas acordes con la amenaza sísmica de Bogotá, capital de Colombia. Se usaron dos de las señales sísmicas de la referencia Marín J. y Ruiz D. (2005). Una de las dos señales corresponde a un sismo de origen cercano a la ciudad de Bogotá, con epicentro inferior a 5 km (Figura 8a). La otra señal corresponde a una señal de origen regional, con epicentro a 40 km (Figura 8b).

Figura 8. Señal de aceleración vs.tiempo para registro de a)sismo cercano y b)sismo Regional

 

Las anteriores señales fueron modificadas de acuerdo con lo establecido por Harris H. y Sabnis G. (1999) para modelos a escala (leyes de la similitud), de tal manera que la señal sísmica que generó movimientos al pórtico de acero instrumentado tuvo una duración de la señal menor pero con un mayor nivel de aceleración.

5.3 Estimación experimental de los periodos de los modelos estudiados

Con el fin de calcular el periodo experimental de los tres tipos de modelos ensayados en la mesa vibratoria (sin disipadores, con disipadores de placas ranuradas con 6 columnas y con disipadores de placas ranuradas con 6 agujeros) se hicieron mediciones de vibración libre. Con este periodo se calibraron los modelos numéricos elaborados en el programa SAP 2000 CSI (2012). Las comparaciones de los periodos estructurales se muestran en la Tabla 1.

Tabla 1. Resumen de resultados de los periodos fundamentales de la estructura

 

En la Tabla 1 es evidente que la presencia de los disipadores de placas ranuradas rigidizan el pórtico lo que se refleja en la disminución de su periodo natural de vibración. Así mismo los disipadores con placas ranuradas con 6 agujeros son más rígidos que los de 6 columnas metálicas, tal como se mostró en la Figura 6.

5.4 Distorsión de entrepiso (deriva sísmica) y comportamiento de los modelos ante señales sísmicas de movimiento en la base

En las Figuras 9 y 10 se presentan los resultados experimentales para las distorsiones de entrepiso (derivas sísmicas) más críticas en los ensayos realizados en la mesa vibratoria. Se presenta para cada modelo con disipadores de energía de placas ranuradas la deriva crítica para los dos sismos analizados. Las distorsiones de entrepiso se calculan como el desplazamiento del piso superior menos el desplazamiento del piso inferior dividido entre la altura del piso (en %). En cada una de las gráficas se muestra la deriva de la estructura con y sin la rehabilitación con los disipadores.

Figura 9. Deriva sísmica máxima en el pórtico de acero rehabilitado con placas ranuradas de 6 columnas

 

Figura 10. Deriva sísmica máxima en el pórtico de acero rehabilitado con placas ranuradas con 6 agujeros redondos

 

A manera de resumen, en la Tabla 2 se presentan los valores de derivas máximas para cada uno de los modelos experimentales.

Tabla 2. Resumen de resultados de los periodos fundamentales de la estructura

 

De acuerdo con los anteriores resultados, se observa una disminución importante en las derivas al rehabilitar el pórtico con disipadores de energía histeréticos metálicos de placas ranuradas. El pórtico sin disipadores tuvo una deriva máxima de 1.34%, el pórtico rehabilitado con placas ranuradas de 6 columnas tuvo una deriva máxima de 0.35 % y el pórtico rehabilitado con placas ranuradas con 6 agujeros redondos tuvo una deriva máxima de 0.13 %. Estos resultados implican una reducción del 74 % y el 90% en las derivas máximas lo cual es consistente con las referencias Marín J. y Ruiz D. (2005) y Fuentes et al. (2005). Estas reducciones se ven reflejadas directamente en un menor nivel de esfuerzo para las uniones viga columna y en la disminución automática de los daños en elementos no estructurales. De acuerdo con los anteriores resultados aunque ambos disipadores generan un mejoramiento notable en el comportamiento mecánico del pórtico, el disipador basado en placas ranuradas con agujeros redondos tiene un mayor y mejor efecto en el sistema estructural, aunque es claro que dicho disipador es más rígido y resistente.

Para verificar que los disipadores estuvieran aportando rigidez, resistencia y capacidad de ductilidad al pórtico rehabilitado (con placas ranuradas con 6 columnas metálicas), se llevó a cabo un barrido de frecuencias con desplazamiento controlado de la mesa vibratoria. Para ello, y para un desplazamiento de 2 mm de la mesa vibratoria (con una función sinusoidal), se incrementó la frecuencia de movimiento desde 1Hz hasta 10 Hz.

Simultáneamente se registraron los desplazamientos totales en la cubierta del pórtico. Debe recordarse que la frecuencia de resonancia del pórtico fue de 1 0.6 Hz (0.094 s). En la Figura 11a se observa dicho registro de desplazamiento de la cubierta. Es evidente que al llegar a los 97 segundos a un desplazamiento total de 8 mm (desplazamiento relativo de 6 mm) a la frecuencia de resonancia del pórtico; se indujeron ciclos de carga y descarga en los disipadores que originaron una falla de los mismos por fatiga como se evidencia en la Figura 11b.

Figura 11.a) Desplazamiento total en la cubierta para diferentes frecuencias y una misma amplitud de desplazamiento de la mesa vibratoria, b) Falla de los disipadores por fatiga

 

Para poder llegar al anterior resultado fue necesario aplicar 630 ciclos de carga y descarga a los disipadores histeréticos, lo cual es muy poco probable que suceda durante un evento sísmico real, en donde a lo sumo estarían sometidos a 10 ciclos de carga y descarga con esfuerzos cercanos a los de fluencia. Esto apunta a que este tipo de disipadores de energía tendrían ciclos histeréticos estables, con un adecuado nivel de disipación de energía y con una disminución de los daños elementos estructurales y no estructurales como consecuencia de la disminución de los niveles de deriva sísmica.

6. Conclusiones

• Los disipadores histeréticos pasivos metálicos de placas ranuradas instalados en el pórtico bajo análisis, modificaron las características dinámicas de éste. Por esto disminuyó el periodo fundamental del pórtico de 0.22 segundos a 0.094s y 0.047 s para la estructura con disipadores de placas ranuradas con columnas y con agujeros redondos, respectivamente.

• Los disipadores lograron absorber gran parte de la energía de entrada de los movimientos sísmicos de la mesa vibratoria. Gracias a la capacidad de disipación de energía de las placas con ranuradas que componen éstos disipadores, lograron disminuir las fuerzas que actúan directamente en los elementos estructurales del pórtico. Por lo tanto, la vulnerabilidad sísmica del pórtico disminuyó.

• De acuerdo con los resultados experimentales, se obtuvo una reducción importante de la distorsión de entrepiso para los sismos bajo análisis en todos los niveles del pórtico. Los disipadores de placas ranuradas con agujeros redondos redujeron la deriva máxima en un 90%, mientras que los disipadores de placas ranuradas con columnas metálicas disminuyeron la deriva en un 74%.

• El buen funcionamiento de la rehabilitación depende del diseño de los disipadores a implementar. El presente trabajo se desarrolló con base en un pórtico en particular, con características dinámicas propias del mismo y analizado bajo efectos sísmicos previamente designados. Es por esto que para rehabilitar una estructura con este tipo de disipadores de placas ranuradas es necesario realizar un análisis dinámico previo de la estructura considerando la peligrosidad sísmica de la edificación.

Juan Pimiento*, Andrés Salas*, Daniel Ruiz1*

* Pontificia Universidad Javeriana. COLOMBIA

jueves, 10 de julio de 2014

Uso de aisladores de base en puentes de concreto simplemente apoyados

En el presente artículo se presenta una comparación del comportamiento sísmico de puentes de concreto reforzado simplemente apoyados, usando aisladores de base de tres tipos, los aisladores de elastoméricos de alto amortiguamiento HDRB por sus siglas en inglés (High Damping Rubber Bearings), los aisladores elastoméricos con núcleo de plomo LRB (Lead Rubber Bearings) y el sistema de péndulo de fricción FPS (Friction Pendulum System). Se tomó como caso de estudio el viaducto la flora, definiéndose la geometría y su correspondiente modelamiento en SAP2000. Se definieron las propiedades mecánicas de los tres aisladores usando un modelo bilineal; para el modelo del viaducto se realizó un análisis dinámico no lineal de historias en el tiempo, considerando la no linealidad en los aisladores, usando los sismos de la falla Frontal y la falla Bucaramanga-Santa Marta, escalados a nivel de superficie. Se compararon los resultados del modelo sin aislamiento sísmico versus los tres modelos con sistema de aislamiento sísmico, y se encontró que los diferentes sistemas de aislamiento sísmico reducen signifcativamente la demanda de los desplazamientos y fuerzas cortantes en las pilas del puente que le inducen los probables terremotos que puedan ocurrir.
1. Introducción
Los puentes son estructuras de vital importancia. Ellos actúan como un eslabón importante en la red de transporte terrestre y un daño serio en los mismos durante un evento sísmico, impedirá brindar la ayuda necesaria. La actividad sísmica de las últimas décadas ha puesto de manifesto la vulnerabilidad de los puentes ante este fenómeno.
El control pasivo de estructuras es una de las estrategias que se han propuesto en los últimos años para controlar los desplazamientos y las fuerzas de inercia que se generan en los puentes durante un temblor. El concepto en el que se basa el control pasivo se orienta a la reducción de la demanda sísmica en la estructura y a mejorar su capacidad de disparar energía, más que en tratar de incrementar su capacidad de resistencia o de deformación. La adecuada aplicación de este criterio conduce a sistemas que se comportan en forma elástica durante grandes sismos; contrariamente al diseño tradicional, en el que se pretende mejorar la capacidad de disipar energía de la estructura mediante el daño en los elementos que la forman. Esto representa una importante ventaja, ya que al evitar el daño de los elementos de la estructura se consigue que permanezca en condiciones de fluncionalidad después de ocurrido un siniestro [1].
En la Figura 1(a) se ilustra el efecto de un sismo importante en una estructura típica de un puente, donde las grandes deformaciones generan agrietamientos importantes en las pilas, a las que se les exige una gran ductilidad para lograr disipar la energía del temblor sin que la estructura se derrumbe. En la Figura 1(b) se presenta el caso de un puente con un sistema de aislamiento, con el cual se logran reducir las fuerzas de inercia en las pilas del puente. La disipación de energía inelástica que se demanda en un sismo extremo se realiza por medio de la deformación histerética de los apoyos, en lugar de hacerlo a través del daño en las pilas del puente.

Diferentes estudios realizados [2] - [7], han demostrado la efectividad de usar diferentes sistemas de aislamiento sísmico en puentes. En [8], se muestra un estado del arte detallado de estudios analíticos y experimentales sobre la efectividad de sistemas de aislamiento sísmico y su implementación actual en puentes.
2. Descripción y modelamiento del viaducto la flora
2.1 Geometría
El viaducto la flora es una estructura en concreto pretensado, construido con un sistema de pila y losa, con una longitud total de 298.3 metros. Consta de dos estribos (estribo conucos al norte y estribo tejar moderno al sur) y ocho pilares. El tablero está divido en tres secciones, lo que da como resultado cuatro juntas ubicadas de la siguiente forma: dos en los estribos y las otras dos en los ejes 3 y 6. La altura aproximada en el pilar más alto es de 46 metros que corresponde al eje 4, y la luz más grande la encontramos entre los ejes 7 y 8, de 39 metros. El puente tiene un ancho total de 25 metros y consta de tres carriles y sendero peatonal en cada sentido (verFigura 2).

Las vigas están conformadas por las secciones transversales que se muestran en la Figura 3 y están construidas en concreto pretensado, las vigas se encuentran simplemente apoyadas en sus extremos (un extremo fijo y el otro móvil), en cada luz existen 10 vigas excepto en el tramo comprendido entre los ejes 7 y 8, el cual tiene 11 vigas debido a la longitud de su luz de 39m.


viernes, 2 de noviembre de 2012

Base técnica de aislamiento sísmico para Construcción Sismo Resistente

Es más fácil ver el principio en el trabajo haciendo referencia directa a la más utilizada de estas técnicas avanzadas, conocidas como aislamiento de base. Una estructura de base aislada es apoyado por una serie de almohadillas de cojinete, que se colocan entre los edificios y los cimientos del edificio.

Base Isolation Technique

Base técnica de aislamiento

El concepto de aislamiento de la base se explica por ejemplo un edificio que descansa sobre rodillos de fricción. Cuando la tierra tiembla, los rodillos de rodar libremente, pero el edificio anterior no se mueve. Por lo tanto, ninguna fuerza se transfiere al edificio debido a los temblores de la tierra, simplemente, el edificio no experimenta el terremoto.

Ahora, si el mismo edificio se apoya sobre las almohadillas flexibles que ofrecen resistencia contra los movimientos laterales (fig. 1B), a continuación, un cierto efecto de la vibración de la tierra será transferido a la construcción anteriormente. Si las almohadillas flexibles están correctamente elegido, las fuerzas inducidas por el sacudimiento del terreno puede ser varias veces menor que el experimentado por el edificio construido directamente en la tierra, es decir, un edificio de base fija (Fig. 1c). Las almohadillas flexibles se denomina base-aisladores, mientras que las estructuras protegidas por medio de estos dispositivos se denomina base-aisladas edificios. La característica principal de la tecnología de aislamiento de la base es que introduce flexibilidad en la estructura.

Como resultado, un sólido de altura media mampostería o edificio de hormigón armado se vuelve extremadamente flexible. Los aisladores se diseñan a menudo, para absorber la energía y por lo tanto añadir amortiguación al sistema. Esto ayuda a reducir aún más la respuesta sísmica de la construcción. Muchos de la base de aisladores se parecen a las almohadillas de goma grandes, aunque hay otros tipos que se basan en deslizamiento de una parte del edificio en relación con otros.Además, el aislamiento de base no es adecuado para todos los edificios. Muy bajo los edificios de mediana altura se apoyaba en el suelo duro debajo, edificios de gran altura o edificios descansaba en el suelo blando no son adecuados para el aislamiento de base.

Concept of Base Isolation

Concepto de Aislamiento de la Base

Goma de entrega de los rodamientos son los tipos de uso más frecuente de los cojinetes de aislamiento de base. Un cojinete de caucho de plomo está hecho de capas de caucho intercaladas junto con capas de acero. En el centro de la pista sólida "tapón". En la parte superior e inferior, el cojinete está equipada con placas de acero que se utilizan para unir el cojinete para el edificio y los cimientos. El cojinete es muy rígido y fuerte en la dirección vertical, pero flexible en la dirección horizontal.

¿Cómo funciona?

Para tener una idea básica de cómo funciona el aislamiento de base, en primer lugar examinar el diagrama anterior. Esto demuestra un terremoto actuando en la construcción de bases aisladas y una convencional, de base fija edificio. Como resultado de un terremoto, el suelo debajo de cada edificio comienza a moverse. . Cada edificio responde con movimiento que tiende hacia la derecha. El desplazamiento edificios en la dirección opuesta al movimiento del suelo es en realidad debido a la inercia. Las fuerzas de inercia que actúan sobre un edificio son la más importante de todas las generadas durante un terremoto.

Además de un desplazamiento hacia la derecha, el edificio de la ONU-aislado se muestra también estar cambiando su forma a partir de un rectángulo a un paralelogramo. Decimos que el edificio se deforma. La causa principal de daño del terremoto a los edificios es la deformación que sufre el edificio, como resultado de las fuerzas de inercia sobre ella.

Respuesta de los Edificios Base Aislada

La construcción de edificios aislados conserva su forma original, rectangular. La construcción de la base aislada en sí escapa a la deformación y el daño que-implica que las fuerzas de inercia que actúan sobre la construcción de la base aislada se han reducido. Experimentos y observaciones de base-aisladas edificios durante los terremotos hasta un mínimo de ¼ de la aceleración de comparables de base fija edificios.

La aceleración se reduce debido a que el sistema de aislamiento de base se alarga un período de edificios de la vibración, el tiempo que le toma a un edificio a balancearse hacia adelante y hacia atrás y luego de vuelta otra vez. Y, en general, las estructuras con períodos más largos de vibración tienden a reducir la aceleración, mientras que aquellos con períodos más cortos tienden a aumentar o amplificar la aceleración.

Esférica base deslizante Aislamiento

Spherical Sliding Base Isolation

Esférica base deslizante Aislamiento

Esféricos correderas sistemas de aislamiento son otro tipo de aislamiento de la base. El edificio se apoya en teniendo almohadillas que tienen una superficie curva y de baja fricción. Durante un terremoto el edificio es libre de deslizarse sobre los cojinetes. Dado que los cojinetes tienen una superficie curva, el edificio se desliza horizontalmente y verticalmente. Las fuerzas necesarias para mover el edificio hacia arriba limita las fuerzas horizontales o laterales que de otro modo podrían causar deformaciones de construcción. También mediante el ajuste de la radio de los cojinetes de superficie curva, esta propiedad se puede utilizar para el diseño de los cojinetes que también alargar el período de edificios de vibración

Aisladores Sismicos

Como forma de disminuir los efectos de los sismos en las estructuras o edificios, en Chile se esta utilizando la aislación sísmica de base y la disipación de energía. Ambas metodología han demostrado a nivel mundial que son capaces de disminuir notoriamente los daños que producen los terremotos en las estructuras o edificios.

Aislación sísmica de base – Esta basada en la idea de aislar una estructura del suelo mediante elementos estructurales que reducen el efecto de los sismos sobre la estructura. Estos elementos estructurales se denominan aisladores sísmicos y son dispositivos que absorben mediante deformaciones elevadas la energía que un terremoto transmite a una estructura. Estos dispositivos pueden ser de diferentes tipos y formas, los mas conocidos son los basados en goma de alto amortiguamiento, goma con núcleo de plomo, neoprenicos o fricciónales. Al utilizar estos elementos, la estructura sufre un cambio en la forma como se mueve durante un sismos y una reducción importante de las fuerzas que actúan sobre ella durante un sismo. 


Efecto de un sismo en un edificio

Efecto de un sismo en un edificio con aislacion de base

En Chile los mas usados son los de goma de alto amortiguamiento y los neoprenicos. Una aplicación de esta tecnología lo constituye elEdificio Andalucía que fue el primer edificio habitacional en Chile con aislación sísmica de base. Actualmente también se utiliza esta tecnología en obras civiles como el Viaducto Marga-Marga que fue el primer puente carretero construido con aislacion sísmica de base.


Aislador Edificio Andalucía
Aislador Viaducto Marga-Marga

Disipación de energía – Esta basada en la idea de colocar en la estructura dispositivos destinados a aumentar la capacidad de perder energía de una estructura durante un terremoto. Toda estructura disipa o elimina la energía de un sismo mediante deformaciones. Al colocar un dispositivo de disipación de energía en una estructura, estos van ha experimentar fuertes deformaciones con los movimientos de la estructura durante un sismo. Mediante estas fuertes deformaciones se incrementa notablemente la capacidad de disipar energía de la estructura con una reducción de las deformaciones de la estructura. Estos dispositivos se conocen como disipadores de energía o amortiguadores sísmicos y pueden ser de diversas formas y principios de operación. Los mas conocidos son en base a un elemento viscoso que se deforma o con un elementos metálico que logra la fluencia fácilmente.


Ensayo de Disipador Viscoso de Energía

Disipadores Viscosos de Energía

En Chile, son de uso reciente en estructuras. El caso mas conocido es el Puente Amolanas que tiene 4 amortiguadores sísmicos.

La división estructuras-construcción del Departamento de Ingeniería Civil de la Universidad de Chile investiga la forma de desarrollar este tipo de tecnología y aplicarla en Chile. Fruto de estos trabajos son aplicaciones pioneras de la aislación sísmica de base en Chile, tales como el edificio Andalucía que es el primer edificio habitacional antisísmico del país, el Viaductos Marga-Marga que introdujo en el país la aplicación de aislación sísmica en obras viales y el Puente Amolanas que introdujo la aplicación de disipación de energía en obras viales.

Edificio Andalucía

Viaducto Marga-Marga

Puente Amolanas