El sismo de Chile del 27 de febrero del 2010, tuvo características excepcionales en cuanto a magnitud, duración, aceleraciones, contenido de frecuencias, poder destructivo, etcétera. El terremoto produjo un nivel considerable de daños estructurales en varios edificios de concreto armado de diversas alturas, particularmente en los ubicados sobre suelos blandos, susceptibles de amplificar las aceleraciones sísmicas de manera sustancial. En especial, se dieron fallas en los muros estructurales de concreto armado de carácter repetitivo en muchos edificios, cuya naturaleza fue discutida por especialistas peruanos, sin que se llegara a un consenso. En este artículo se comentan algunos tipos de fallas, a partir de investigaciones realizadas y basadas también en los códigos de diseño del ACI chileno y peruano para, de esta manera, aprovechar las lecciones dejadas por este sismo, así como para proponer mejoras en el diseño estructural.
Introducción
El terremoto ocurrido el 27 de febrero del 2010 en Chile, produjo fuertes daños en numerosas edificaciones (edificios, obras portuarias, obras viales, naves industriales, etc.) construidas con diversos materiales (concreto armado, albañilería, acero, tierra cruda, etc.). En particular, fue notorio el daño presentado en edificios de concreto armado, estructurados con muros, columnas y vigas. Llamó la atención la formas de falla repetitiva que exhibieron los muros de concreto armado; en especial, la falla horizontal localizada en la zona superior de los muros con el pandeo del refuerzo vertical interno. Ello originó un debate entre especialistas peruanos en estructuras, sin que se llegara a unconsenso; de ahí que es importante conocer las causas de estas fallas para que no se repitan en sismos futuros, o al menos, que sus efectos queden atenuados. Es por esto que se presentan en este artículo una serie de comentarios sobre estas fallas, contemplando las investigaciones experimentales realizadas y las especificaciones reglamentarias de tres códigos de diseño estructural.
Características del sismo
De acuerdo a la información del Servicio Geológico de los Estados Unidos (USGS por sus siglas en inglés), (Ref.1 y Fig.1), el sismo tuvo una magnitud Mw=8.8; produjo fuertes daños en una extensa zona, incluyendo a la capital, Santiago, ubicada a 325 km del epicentro, así como en otras ciudades como Concepción, situada a 115 km del epicentro. El foco fue localizado a 35 km de profundidad.
En Santiago, según la información proporcionada por Boroschek, et. al. 2010 (Ref. 2), las aceleraciones horizontales máximas en suelo de buena calidad, oscilaron entre 0.17 y 0.30 g, con un promedio de 0.24 g. Sin embargo, en la Comuna de Maipú (distrito de Santiago, Fig.2), esta aceleración fue de 0.56 g, 2.3 veces mayor que el valor promedio registrado en suelo duro, lo que se atribuye a las características particulares del suelo de Maipú.
El promedio de la aceleración horizontal en suelo duro (0.24 g) de Santiago -a 325 km del epicentro-, fue menor que el valor utilizado en suelo duro para efectos de diseño estructural para la zona sísmica 2 (0.3 g, Ref.3). Sin embargo, si bien la Norma Sísmica Chilena (Ref. 3) ubica a Santiago en la zona sísmica 2, en la Fig. 18 se aprecia que la ciudad está localizada prácticamente en la frontera con la zona sísmica 3, donde la aceleración de diseño en suelo duro es 0.4 g, por lo que en Santiago, desde el punto de vista estructural, el sismo en cuestión debió haberse catalogado como "moderado"; aún así, produjo fuertes daños estructurales. Al cierre de este artículo, se tiene conocimiento de que en Concepción, a 115 km del epicentro, la aceleración horizontal máxima registrada fue 0.65 g (Ref.4) y 0.4 g (Ref.13); sin embargo, aún no se conoce el tipo de suelo donde estuvieron ubicados los acelerógrafos.
Formas de falla en los muros de concreto armado
En las visitas de reconocimiento efectuadas por Quiun, Silva y Blanco (Ref. 5), así como por las fotografías extraídas de internet, se observan las clásicas fallas por flexión, las de fuerza cortante y las de deslizamiento en los muros de concreto armado, producidas también en los diversos terremotos ocurridos en el mundo (Ref. 6). Sin embargo, llamó 2 la atención una forma de falla horizontal, localizada en la parte superior de los muros, con un pandeo del refuerzo vertical interno. Puesto que para los autores esta forma de falla no tiene antecedentes, y porque se presentó en muchos edificios, se le trata en forma especial más adelante. Debe mencionarse que el momento flector, la carga axial y la fuerza cortante, actúan de manera simultánea durante el sismo, y que sus valores máximos tienen lugar en los primeros pisos del edificio, por lo que es allí donde tienden a presentarse las fallas, que inclusive pueden darse por una combinación de las tres fuerzas de sección mencionadas.
Falla por flexión
Este tipo de falla se presenta cuando la capacidad de resistencia a la fuerza cortante (proporcionada por el refuerzo horizontal y el concreto) supera a la de flexión (generada por el refuerzo vertical y la carga axial). Esta falla se caracteriza por el balanceo del muro en torno a sus extremos, transmitiéndose gran parte de la carga vertical (P, en la Fig. 3) por el extremo comprimido, lo que puede originar la trituración del concreto con el subsiguiente pandeo del refuerzo vertical, en caso de que no exista confinamiento en los extremos (caso muy común en los edificios chilenos, Fig.4). Aunado a esto, experimentalmente se ha observado (Ref. 8) que una vez formada la grieta de tracción por o flexión en el borde del muro, el refuerzo vertical al trabajar en tracción o compresión, trata de expulsar al concreto. Estas continuas aberturas y cierres de las grietas, son las causantes de la trituración del concreto en el borde carente de confinamiento.
Cabe indicar que sólo los bordes libres (sin muros transversales) necesitan ser confinados con estribos a corto espacia-miento, puesto que en el extremo con muros transversales largos, el área flexocomprimida se incrementa notoriamente, aparte que los muros transversales proporcionan confinamiento al muro en análisis (Fig. 5). Asimismo, el refuerzo vertical existente en los muros transversales y la carga de gravedad que baja por esos muros, incrementan notoriamente la capacidad resistente a flexión del muro en análisis y tratan de evitar que se desarrollen las grietas de tracción por flexión en esa unión entre muros. En la Fig. 5, no puede afirmarse que la falla haya sido netamente por flexión; si esto hubiese sido así, los giros por flexión en el muro hubieran sido importantes y habrían generado la formación de una rótula plástica en la viga que arriba coplanarmente al muro; asimismo, se hubiesen presentado otras fisuras de tracción por flexión en el muro y la falla hubiera quedado concentrada principalmente en su base. Como lo indicado no ocurrió, se piensa que la falla del muro se debió a una acción combinada de flexión y fuerza cortante, agravada por la carga vertical concentrada que transmiten las vigas en el extremo libre superior del muro.
Conviene señalar que la falla por flexión trata de concentrarse en la zona más débil del muro, por ejemplo, donde hay una reducción significativa de su longitud (Fig. 6), evidentemente porque la capacidad resistente a flexión en la zona más larga del muro es mayor que la existente en la zona de menor longitud.