viernes, 14 de noviembre de 2014
Propuesta de normativa para la rehabilitación símica de edificaciones patrimoniales
sábado, 8 de noviembre de 2014
Aisladores y disipadores sísmicos
Estos sistemas se colocan entre la subestructura y la superestructura de edificios, puentes y también en algunos casos, en la misma superestructura de edificios, y permiten mejorar la respuesta sísmica aumentando los periodos y proporcionando amortiguamiento y absorción de energía adicional, reduciendo sus deformaciones según sea el caso.
Sin embargo, desde el punto de vista estructural, ambos sistema trabajan de forma muy diferente. Veamos las diferencias:
Los aisladores sísmicos consiguen desacoplar la estructura del terreno colocándose estratégicamente en partes especificas de la estructura, los cuales, en un evento sísmico, proveen a la estructura la suficiente flexibilidad para diferenciar la mayor cantidad posible el periodo natural de la estructura con el periodo natural del sismo, evitando que se produzca resonancia, lo cual podría provocar daños severos o el colapso de la estructura.
Es decir, la idea es separar una estructura de los movimientos del suelo mediante la introducción de elementos flexibles entre la estructura y su cimentación. Los aisladores reducen notablemente la rigidez del sistema estructural, haciendo que el periodo fundamental de la estructura aislada sea mucho mayor que el de la misma estructura con base fija. Como una imagen vale mas que mil palabras, os pongo un vídeo donde se puede ver la diferencia entre una estructura sin aislador y otra con aislador. Video
Los disipadores sísmicos tienen como función disipar las acumulaciones de energía asegurándose que otros elementos de la estructuras no sean sobresolicitados, evitando daños a la estructura. Es decir, los disipadores sísmicos ofrecen un incremento de la amortiguación a la estructura.
En el siguiente vídeo podemos ver como se comporta una estructura con y sin disipadores
sísmicos: Video
Los japoneses usan estos sistemas en sus edificios con regularidad. En el siguiente vídeo se puede observar como se mueven unos rascacielos de Japón con estos sistemas sísmicos, sin sufrir daños, durante el terremoto de marzo de 2011
viernes, 19 de septiembre de 2014
Las pruebas del equipo del sistema ABC Con Resistencia a Terremoto

Se le añadió una serie de filamentos pretensados y barras de refuerzo tradicionales a las columnas de hormigón que luego fueron sustentada por tapas de acero. La disposición, que está destinado a ayudar a los puentes soportan fuertes terremotos, está siendo probado en las mesas de agitación de la Universidad de Nevada. © John Stanton
Mesas Shake pondrán a prueba un sistema de doblado prefabricado que se puede construir utilizando la construcción de puentes acelerado (ABC) técnicas y ofrece un mejor rendimiento sísmica.
Un equipo de investigación está completando una serie de pruebas en las grandes mesas de agitación en la Universidad de Nevada que se centra en una versión de una cuarta escala de un nuevo sistema de doblado puente que se puede construir con la ayuda de la construcción de puentes acelerada (ABC) técnicas y también ofrece un mejor comportamiento sísmico. La prueba final se replicará el terremoto de magnitud 6,9 que sacudió Kobe, Japón, en 1995. Dirigido por John Stanton, Ph.D., PE, profesor del departamento de ingeniería civil y ambiental en la Universidad de Washington, el equipo incluye a Marc Eberhard , Ph.D., profesor de la Universidad de Washington, y David Sanders, Ph.D., F.ASCE, profesor de la Universidad de Nevada. Dos asistentes de investigación de posgrado en la Universidad de Washington, Travis Thonstad, SMASCE y Olafur Haraldsson, SMASCE, también son miembros, junto con el Islam Mantawy, asistente de investigación en la Universidad de Nevada. Stanton dice que los métodos tradicionales de ABC que se basan en elementos prefabricados concreto plantea un problema en las zonas sísmicas debido a que las conexiones en el lugar entre vigas y columnas son generalmente más débiles que los propios miembros. "El puente se construye más fácilmente si las piezas prefabricadas individuales son rectas, como vigas y columnas tradicionales, y están conectados en sus intersecciones, pero lamentablemente esas intersecciones son exactamente donde las fuerzas sísmicas llegan a ser lo peor", dice Stanton. "Así que al hacer el puente fácil de construir, entonces usted está haciendo su dolor de cabeza terremoto mucho más grande. Es un verdadero reto, ¿cómo puede usted hacer estas conexiones de trabajo tanto para la factibilidad de construcción y sismo resistencia? Hemos golpeado la cabeza contra las paredes de ladrillo durante mucho tiempo para tratar de trabajar que uno. " Y entonces, dice Stanton, Un día hace varios años tuvo una epifanía mientras se prepara para una conferencia de la ingeniería sísmica. Después de esbozar el concepto, desarrolló dibujos más detallados y buscó las opiniones de sus colegas y contactores, recuerda. Todo indica que el concepto era factible, y las pruebas posteriores han apoyado esto. El equipo realizó pruebas pseudoestática de las inclinaciones que aumentaron progresivamente las fuerzas horizontales. En estas pruebas, el equipo empujó primero la parte superior de las columnas por la deriva aproximadamente el 2 por ciento esperado en un sismo de diseño y luego por la deriva del 3 al 4 por ciento esperado en un terremoto máximo creíble, que tiene un periodo de retorno de 2.500 años.
domingo, 31 de agosto de 2014
Comportamiento Sísmico y requisitos de diseño para edificios de gran altura de hormigón
Núcleo de hormigón de la pared de la construcción puede ofrecer ventajas de menores costos, mayor rapidez de construcción y la arquitectura más abierta y flexible. El ahorro de costes y el calendario se dio cuenta, porque las paredes del núcleo edificios resistir las fuerzas sísmicas y deformaciones sin los pórticos que se utilizan en el tradicional de gran altura de la construcción. Al eliminar la necesidad de marcos de momento, los miembros más pequeños de encuadre o losas planas se pueden utilizar para los pisos del edificio, y la profundidad de enmarcar plantas se pueden reducir.
En un edificio de pared central, resistencia a las fuerzas sísmicas es proporcionada por un núcleo de hormigón armado que rodea los ascensores. Las escaleras, los baños y mecánicos / servicio de los usos también pueden localizarse en el núcleo. Para edificios de 300 pies o más de altura, el núcleo de hormigón por lo general tiene una dimensión mínima de 30 pies en cada dirección en planta, con paredes que son de 18 a 30 pulgadas de espesor (Figura 1). Aberturas regulares se utilizan en los muros del núcleo, y las vigas de acoplamiento por encima de las aberturas son reforzados y detallados para disipar la energía del terremoto.
Figura 1: Hormigón núcleo pared del edificio en construcción, el Washington Mutual / Seattle Art Museum, Magnusson Klemencic Asociados, Ingenieros Estructurales.
Código de aceptación de no-prescriptivo Designs
En zonas sísmicas de alto, las disposiciones preceptivas de los códigos de construcción de Estados Unidos no permiten que el núcleo del sistema de pared estructural para edificios de más de 240 pies de altura, sin embargo, en la construcción de las disposiciones del código que permiten los sistemas alternativos de construcción, las autoridades han concedido la aprobación a los edificios de la pared del núcleo de más de 240 pies de altura con el proceso de Peer Review sísmica. (Ver recuadro). El ingeniero de registro es necesario para identificar las excepciones que se están tomando a los requisitos preceptivos, y para demostrar a un revisor experto que el edificio ofrece un rendimiento al menos sísmica equivalente a la que implícita o como resultado de las prescripciones normativas del código de construcción .La tarea del ingeniero de grabación es mostrar que un edificio cumple con los criterios de realización equivalentes definidas en la Sección 104.11 IBC:
104.11 Los materiales alternativos, el diseño y los métodos de construcción y equipamiento. Las disposiciones del presente Código no están previstas para impedir la instalación de cualquier material o de prohibir cualquier diseño o método de construcción que no esté específicamente previsto en el presente Código, siempre que cualquiera de estas alternativas ha sido aprobada. Un material alternativo, el diseño o método de construcción deberán ser aprobados en el funcionario de la construcción se encuentra que el diseño propuesto es satisfactorio y cumple con la intención de las disposiciones de este Código, y que el material, el método o el trabajo que se ofrece es, para los fines previstos , por lo menos el equivalente de la prescrita en el código en la calidad, resistencia, eficacia, resistencia al fuego, durabilidad y seguridad.
Para los que no prescriptivas diseños sísmicos, el desempeño se evalúa con respecto a la fuerza, la eficacia y seguridad. Diseños sísmicos alternativos o no prescriptivo también son aceptados en el código de construcción por la ASCE 7-05, Sección 12.1.1, párrafo 3:
Sísmicas que resisten la fuerza-los sistemas que no están contenidas en la Tabla 12.2-1 se permitirá si los datos analíticos y de ensayo se sostiene que establecer las características dinámicas y demostrar la fuerza de resistencia lateral y capacidad de disipación de la energía son equivalentes a los sistemas estructurales que figuran en la tabla 12.2 -1 para el coeficiente equivalente de modificación de respuesta, R, sistema de coeficiente de sobrerresistencia, Ωo, y factor de amplificación de la desviación, CD, valores.
Aunque la Tabla 12.2-1 de la ASCE 7-05 enumera una serie de tipos de muro de hormigón sísmicos resistentes al fuerza de los sistemas, ninguna de las reglas de diseño de estos sistemas son tan estrictos como los requisitos de diseño de la capacidad general aplicada al diseño de núcleo paredes de edificios altos. Por lo tanto, sobre la base de comportamiento sísmico esperado, la capacidad de diseño y flexión gobernados edificios con paredes de concreto se puede considerar un tipo distinto de sismo-resistente a fuerzas del sistema. Esta distinción existe actualmente en los códigos de construcción fuera de los EE.UU., y ha sido discutido como un posible cambio de los códigos de construcción próximos de Estados Unidos por el American Concrete Institute y el Nacional de Terremotos Peligros Programa de Reducción.
Figura 2: La acción típica no lineal para una pared en voladizo (izquierda) es una bisagra de flexión de plástico en la base de la pared. Para una pared acoplado (derecha) acciones no lineales son flexión rendimiento vigas de acoplamiento y una bisagra de flexión de plástico en la base de la pared.