sábado, 6 de julio de 2013

Daño no Estructural en un Sismo

El daño sísmico no estructural es el que sufren los elementos no estructurales (paredes livianas, vidrios, muebles, lámparas, etc.) por el efecto de un sismo. Es el deterioro físico de los componentes que no forman parte integral del sistema resistente o estructura de la edificación y que pueden ser arquitectónicos y electromecánicos, que cumplen funciones importantes dentro de las instalaciones, pero que igualmente se pueden ver afectados.
Los componentes no estructurales pueden incidir o propiciar la ocurrencia de fallas estructurales o pueden modificar la respuesta de movimiento esperada según el diseño. Por ejemplo, si se adicionan  escaleras, bloques o revestimientos pesados, se pueden introducir excentricidades y otros efectos de movimientos no deseados en el edificio.
Existen tres grandes efectos primarios de los elementos no estructurales en edificios:
1. Efectos inerciales.


Cuando un edificio es movido durante un sismo, la base del mismo se desplaza de la misma forma que el terreno, pero el resto del edificio y su contenido sobre la base experimentarán fuerzas inerciales, de oposición al movimiento. Es decir, mientras que la estructura se mueve hacia un lado, todo lo que son muebles, lámparas, estantes, etc., van a oponerse a ese movimiento.
El principio básico de las fuerzas inerciales sísmicas es la segunda Ley de Newton donde la fuerza es igual a la masa por la aceleración. Estas son mayores si la masa es mayor o si la aceleración o la severidad del movimiento es mayor.  
Consecuentemente, los elementos no estructurales que pueden ser dañados o causar daño por las fuerzas inerciales son, entre otros: archivadores, equipo generador de energía, estantes de libros sin adosar o muebles.  Por ejemplo, en la siguiente figura se pude ver la caída de objetos dentro de una casa que se encontraba sobre la falla que originó el terremtoo de Kobe, Japón, en 1995.  La casa se mantuvo en pie, a pesar de que la falla pasaba a unos metros cerca de esta. Sin embargo, observen la forma en que quedó el interior de la cocina.

Figura 1. Traza de la falla cerca de una vivienda en la isla Awaji durante el terremoto de Kobe de 1995. Como puede verse, la estructura se mantuvo en pie a pesar de la cercanía de la falla que si causó daños en la ciudad. (Más información en http://home.hiroshima-u.ac.jp/kojiok/nojimaeq.htm). A la derecha se ve el daño causado dentro de la cocina de la misma casa producto de objetos sueltos. (Foto de Internet)
Cuando elementos sin sujeción (o sueltos, como en la figura anterior) son movidos por un terremoto, las fuerzas inerciales pueden causar deslizamiento, oscilaciones y golpes con otros objetos o volcamiento, obstaculizándose el paso para el desalojo del edificio. Este es quizás el principal problema de estos elementos, que pueden llegar a bloquear las salidas de emergencia.
Un error común es pensar que los objetos grandes y pesados son estables y no tan vulnerables a los daños por sismos fuertes como los objetos livianos. De hecho, muchos tipos de objetos pueden ser vulnerables al daño por sismo causado por fuerzas inerciales, debido a que estas son proporcionales a la masa o peso de un objeto.
pub26fig1.jpg

domingo, 30 de junio de 2013

Dispositivos de disipación de energía para Sismorresistente Diseño Edificio

Otro enfoque para el control de daños sísmicos en los edificios y la mejora de su comportamiento sísmico es mediante la instalación de amortiguadores sísmicos en el lugar de los elementos estructurales, tales como tirantes diagonales. Estos actúan como amortiguadores de los amortiguadores hidráulicos en los coches - gran parte de los tirones bruscos son absorbidos en los fluidos hidráulicos y sólo poco se transmite arriba para el chasis del coche. Cuando la energía sísmica se transmite a través de ellos, amortiguadores absorben parte de ella, y por lo tanto amortiguan el movimiento del edificio.
Energy Dissipation Devices
Dispositivos de disipación de energía
Amortiguadores sísmicos utilizados comúnmente
  1. Amortiguadores viscosos (energía es absorbida por base de silicona fluido que pasa entre la disposición de cilindro de pistón),
  2. Amortiguadores de fricción (la energía es absorbida por las superficies de fricción entre ellos rocen entre sí),
  3. Amortiguadores de rendimiento (energía es absorbida por los componentes metálicos que rendimiento).
  4. Los amortiguadores viscoelásticos (energía es absorbida por la utilización de la cizalladura controlada de sólidos).
Así, mediante el equipamiento de un edificio con dispositivos adicionales que tienen alta capacidad de amortiguación, podemos reducir en gran medida la energía sísmica que entra en el edificio.
¿Cómo funciona?
How Dampers Work
Cómo amortiguadores funcionan
La construcción de un amortiguador de fluido se muestra en la (fig). Se compone de un pistón de acero inoxidable con cabeza orificio de bronce. Está lleno de aceite de silicona. La cabeza del pistón utiliza pasajes de forma especial que alteran el flujo del fluido amortiguador y por lo tanto alteran las características de resistencia de la compuerta. Amortiguadores de fluido pueden ser diseñados para comportarse como un disipador de energía pura o un resorte o como una combinación de los dos.
Un amortiguador viscoso fluido se asemeja el amortiguador común, tales como las que se encuentran en los automóviles. El pistón transmite la energía que entra en el sistema para el fluido en el regulador de tiro, haciendo que se mueva dentro del amortiguador. El movimiento del fluido dentro del fluido amortiguador absorbe esta energía cinética mediante la conversión en calor. En los automóviles, esto significa que un choque recibida en la rueda se amortigua antes de que alcance el compartimiento de pasajeros. En los edificios que esto puede significar que las columnas del edificio protegidos por amortiguadores sufrirán mucho menos movimiento horizontal y daños durante un terremoto.
Fluid Viscous Dampers
Amortiguadores viscosos fluidos

domingo, 9 de junio de 2013

Licuación de Suelos


La foto muestra una impresionante falla de suelo ocurrida durante el terremoto de Niigata, donde edificios quedaron completamente inclinados y sin experimentar severos daños estructurales.
Existen dos fenómenos que se asocian con el término licuación y se relacionan con un aumento considerable de presiones de poros: Licuación Verdadera y Movilidad Cíclica.
Licuación Verdadera o Falla de Flujo:
Se refiere a una repentina pérdida de resistencia y en el que la masa de suelos fluye asemejándose a un fluido viscoso. El agente gatillante de esta falla puede o no ser de tipo dinámica.
Un ejemplo es lo sucedido con la Presa de San Fernando, en 1971, cuya falla se estima habría comenzado un minuto y medio después de ocurrido el sismo.

Falla en Presa San Fernando
Otro caso corresponde a la Mina de Oro Japonesa Mochikoshi, que experimentó la falla de uno de sus diques 24 horas después de ocurrido el sismo en el año 1978 (no es necesaria la acción permanente de la perturbación).
Movilidad Cíclica o Licuación
Corresponde a la disminución de la rigidez asociada al incremento de presión de poros durante una solicitación cíclica, y que conlleva a un aumento considerable de las deformaciones.
Uno de los pocos registros en vídeo que existían hasta hace un tiempo es la grabación durante el terremoto de Niigata, Japón (1964).

lunes, 27 de mayo de 2013

Daños estructurales en construcciones patrimoniales de la Iglesia Católica en la Arquidiócesis de Concepción producto del sismo del 27 de febrero 2010

Introducción
Este artículo presenta las inspecciones estructurales realizadas a varias construcciones como la Catedral de Concepción e iglesias y capillas pertenecientes al Arzobispado de Concepción. Este trabajo fue encomendado por las autoridades de la Universidad Católica de la Santísima Concepción, el Rector Dr. Juan Cancino y el Gran Canciller Monseñor Ricardo Ezzati, a través de la Vicerrectoría de Asuntos Económicos y Administrativos. La duración de los trabajos fue de alrededor de 3 meses. Si bien se inspeccionaron 34 iglesias y otras estructuras, sólo se presentan análisis de las más importantes y simbólicas.
Se entregan algunos aspectos generales del sismo del 27/02/2010 y una comparación con otros eventos ocurridos en tiempos pasados. Además se presenta una descripción de las estructuras resistentes, los daños observados y se realiza un análisis de las causas de dichos daños. Esta información fue parte de los informes estructurales utilizados para su reparación. Las estructuras inspeccionadas corresponden a la Catedral de Concepción, El Sagrario y la Iglesia La Pompeya, todas ubicadas en el centro de Concepción. Además, se inspeccionó el Templo Parroquial Jesús Obrero, ubicado en el sector Schwager de Coronel y el Santuario de Yumbel. La Figura 1 muestra la ubicación geográfica de las estructuras inspeccionadas de Yumbel y Schwager respecto a Concepción.


A pesar de que se han publicado trabajos sobre los efectos del terremoto del 27 de febrero 2010, estos han sido principalmente sobre daños en edificios habitacionales y en estructuras industriales (GEER 2010, Betanzo, 2010). Es por ello que este trabajo aporta en la investigación de estructuras de iglesias, las cuales son en general más antiguas y por lo tanto ya han sufrido antes grandes terremotos.
Aspectos generales del sismo
El sismo del 27 de febrero del año 2010, de magnitud momento 8.8, tuvo su epicentro en las costas de Cobquecura, región del Bío Bío. Para mayor información sobre este terremoto revisar Barrientos (2010) y Quezadaet al. (2010). La Figura 2 muestra la localización del epicentro, el cual se ubicó a 100 km al norte de la ciudad de Concepción, lo que explica la gran intensidad del sismo en esta zona.