miércoles, 1 de mayo de 2013

Estudio del comportamiento del hormigón armado ante esfuerzos normales y tangentes mediante modelos seccionales de interacción Completa

 
clip_image004
El análisis del comportamiento de los sistemas estructurales puede abordarse mediante diferentes niveles de idealización, pasando desde la consideración del mismo como un sólido tridimensional, hasta su asimilación a un sistema reticular de barras caracterizadas por una sección transversal, tal como se representa en la Fig. 1.
Si bien la modelización como sólido puede ser más representativa de la realidad física de las estructuras de ingeniería, se debe reconocer que los modelos de barras presen- tan ventajas importantes respecto a aquélla. Aunque habitualmente se suele mencionar como principal ventaja el menor coste computacional de los modelos de barra, lo cierto es que ésta, aunque importante, va perdiendo relevancia con el desarrollo de software y hardware más eficientes. Actualmente, los principales aspectos que hacen que los mo- delos de barras sigan siendo, con diferencia, los más empleados para idealizar estructuras de ingeniería civil son:
• Facilidad en la construcción del modelo
• Interpretación de resultados en términos de esfuerzos generalizados directamente aplicable al dimensionamiento
• Reducción de grados de libertad del
sistema
• Menor coste computacional
• Resultados muy satisfactorios para las regiones “B” gobernadas por esfuerzos normales.
Los modelos de barras se han aplicado al análisis no lineal de estructuras de forma satisfactoria, siendo capaces de reproducir numerosos fenómenos que tienen lugar en el hormigón armado, incluyendo el comportamiento post- fisuración, próximo a la rotura, fenómenos di- feridos, acciones ambientales, etc. Ver Marí (1), Marí y Bairán (2), entre otros. En este sentido, la respuesta de toda la barra viene caracteriza- da por la respuesta de la sección transversal. Por lo tanto, una adecuada simulación de la respuesta de la sección ante los esfuerzos a la que se ve sometida es trascendental en los resultados predichos.
A pesar de la versatilidad de los modelos de barras es necesario reconocer ciertas carencias implícitas en las formulaciones de los mismos. Concretamente, al considerar que los elementos son suficientemente lar- gos, se desprecia la existencia de tensiones y deformaciones en direcciones diferentes a la normal a la sección, por lo tanto, sólo son capaces de reproducir los efectos de esfuerzos normales: axil y flexión. Asimismo, la geometría de la sección transversal
es invariable con la solicitación y sólo es posible estudiar “regiones B”. Si bien estas limitaciones no afectan a un número importante de casos prácticos, resulta necesario mejorar algunas de ellas para reproducir fenómenos de carga más generales en estructuras constituidas de materiales como el hormigón armado. Por ejemplo, los esfuerzos tangenciales (cortante y torsión) y los efectos del confinamiento producido por armadura transversal o por encamisado de chapa. En el contexto de este artículo, se denominarán elementos fibra tradicionales” a los modelos seccionales con estas características descritas en este párrafo.
Algunos de los aspectos que pueden mejorar- se son la existencia de un estado multiaxial de tensiones y deformaciones y la presencia de armadura transversal, cuya elongación implica la necesaria distorsión de la geometría de la sección transversal. Estas limitaciones hacen que exista un importante desequilibrio entre el nivel de precisión alcanzada para solicitaciones de esfuerzos normales puros respecto a los casos en que existen esfuerzo- zos tangenciales. El interés de incluir estas mejoras en los modelos de barras abarca un gran número de aplicaciones: evaluación del comportamiento no lineal de estructuras de hormigón ante cargas estáticas que producen fuertes solicitaciones normales y tangentes, evaluación de la capacidad de redistribución real de las estructuras, estudio de estructuras de compuestos no-isótropos, etc.
Entre estas aplicaciones, cabe resaltar la gran relevancia en el estudio del comportamiento sísmico de las estructuras de hormigón, ya que en los grandes terremotos recientes los fallos estructurales en elementos supuestamente bien construidos de acuerdo a normativas modernas tienen involucradas, de una u otra forma, esfuerzos de cortante o torsión, ver Fig.
2. Por otro lado, se debe tener en cuenta que, frecuentemente, en el proyecto sismorresistente se espera la formación de zonas plásticas en los extremos de las vigas y pilares donde los esfuer zos cortantes, momentos flectores y esfuerzos axiles son máximos al mismo tiempo. Más aún, el rango natural de trabajo de estas regiones es el no lineal. Por lo tanto, la necesidad de disponer de modelos de barras capaces de re- producir satisfactoriamente el comportamiento de estas regiones es evidente.
En los últimos años se ha realizado un gran esfuerzo en el desarrollo de modelos seccio- nales capaces de dar solución a las necesi- dades arriba indicadas, Vecchio y Collins(3), Petrangeli (4), Ranzo (5), Bentz (6), entre otros. En general, estos modelos abordan el problema de flexión recta de secciones simé- tricas o bien consideran el estado de carga
clip_image002más general de forma

viernes, 26 de abril de 2013

Vulnerabilidad sísmica, rehabilitación y refuerzo de casas en adobe


Resumen

Aproximadamente un quinto de la población mundial y alrededor de 35 millones de personas en Suramérica habitan en edificaciones de adobe y tapia pisada. Este tipo de edificaciones han demostrado un pobre comportamiento sísmico en los terremotos ocurridos en los últimos cincuenta años alrededor del mundo generando miles de muertes. Adicionalmente, en Colombia, una gran cantidad de construcciones históricas y culturales en tierra están localizadas en zonas de alta sismicidad. Con estos antecedentes, se desarrolló una investigación orientada a conocer el comportamiento de esta tipología constructiva en su estado actual y proponer alternativas de rehabilitación sísmica viables desde el punto de vista técnico. Las dos alternativas propuestas, refuerzo con malla y pañete y refuerzo con maderas de confinamiento, prueban ser factibles, presentando la segunda un mejor comportamiento sísmico relativo.



Introducción, justificación y antecedentes

La tierra es uno de los materiales más antiguos usados en la construcción de edificaciones. La construcción con tierra tiene miles de años de historia y existe evidencia arqueológica que sugiere la existencia de ciudades construidas enteramente en tierra: Jericó, Çatal Huyuk en Turquía, Harappa en Pakistán, Akhlet-Aton en Egipto, Chan-Chan en Perú, Babilonia en Iraq, Duheros en España, entre otras. Todas las grandes civilizaciones del Medio Este -los asirios, los babilonios, los persas y los sumerios- construyeron con tierra apisonada y con bloques de barro. Por otro lado, cuando los españoles empezaron su conquista del Nuevo Mundo, trajeron consigo el conocimiento de la construcción con adobe y tapia pisada. Fue así como se inició la construcción de las principales ciudades capitales del reino de la Nueva Granada. Las casas urbanas del común de la gente eran edificadas en uno o dos pisos en adobe y tapia pisada. Así mismo, en las ciudades se edificaron las construcciones religiosas levantadas en piedra, en tapia pisada o en ladrillo cocido sentado en argamasa. Con el avance de los siglos, el ladrillo cocido desplazó las técnicas de construcción con tierra y estos sistemas tradicionales han ido desapareciendo. Hoy en día sobreviven diversas edificaciones en tierra que deben ser preservadas.


Esquemas de falla y patrones de agrietamiento ante terremotos de las edificaciones en tierra

Las edificaciones de adobe y tapia pisada presentan usualmente unas características constructivas que contribuyen a aumentar su vulnerabilidad sísmica. Frecuentemente la edad de estas edificaciones y el deterioro de las propiedades mecánicas de sus materiales llevan a una disminución adicional de su capacidad de soportar un terremoto.
Los principales factores que contribuyen a aumentar la vulnerabilidad sísmica de viviendas en adobe y tapia pisada son: irregularidades en planta y en altura, distribución inadecuada de los muros en planta, pérdida de la verticalidad -o plomo- de los muros, problemas de humedad, filtraciones, conexión inadecuada entre muros, pérdida de recubrimiento de muros, uso de materiales no compatibles, entrepisos pesados y ausencia de diafragmas, apoyo y anclaje inadecuado de elementos de entrepiso y cubiertas sobre muros, entrepisos muy flexibles, luces muy largas y estructuración de cubierta deficiente.
Con base en las anteriores características, las edificaciones de dos pisos construidas en tierra presentan una mayor vulnerabilidad ante la acción de las fuerzas horizontales inducidas por un evento sísmico, tal como se presenta en la figura 1.
Debido a las deficiencias anteriormente mencionadas, las edificaciones construidas en mampostería de adobe y tapia pisada presentan mecanismos de colapso y patrones de agrietamiento que pueden ser agrupados de acuerdo con la Tabla 1.

martes, 23 de abril de 2013

cómo se producen los terremotos

Un terremoto o seísmo, es un fenómeno de sacudida brusca y temporal de la corteza terrestre producido por la liberación de energía acumulada en forma de ondas sísmicas. La mayoría se producen a raíz de los procesos geotectónicos, como movimientos y rupturas de la corteza terrestre.

Los terremotos tectónicos suelen ocurrir en zonas donde la concentración de fuerzas generadas por los límites de las placas tectónicas dan lugar a movimientos de reajuste en el interior y en la superficie terrestre, que comúnmente acontecen al final de un ciclo sísmico, período durante el cual se acumula deformación en el interior de la Tierra que más tarde se libera repentinamente generando el terremoto.

En esta interesante infografía realizada por la agencia RIA Novosti, se ilustra detalladamente la forma en la que se originan los terremotos, sus diversos tipos y los actuales métodos de pronósticos:

Infografía terremoto