martes, 24 de febrero de 2015

Desempeño sísmico de un pórtico con disipadores de energía pasivos de placas ranuradas de acero

RESUMEN

En este artículo se evalúan dos tipos de disipadores de energía pasivos histeréticos metálicos (placas ranuradas de acero). Estos dispositivos son de bajo costo y de fácil construcción e instalación. Con ensayos en mesa vibratoria se estudió el desempeño sísmico de tres modelos estructurales: un pórtico sin disipadores de energía y dos pórticos con dos tipos de placas ranuradas de acero. Los modelos fueron instrumentados con acelerómetros, galgas extensométricas y deformímetros; y fueron sometidos a dos tipos de señales sísmicas: un sismo regional y un sismo de campo cercano. Los resultados de los ensayos de laboratorio sugieren que los pórticos con las placas ranuradas de acero tienen hasta un 90% menos de distorsión de entrepiso que el pórtico sin rehabilitación. Esto se debe a que las placas ranuradas de acero disipan una gran parte de la energía suministrada por los sismos y los daños sobre la estructura de soporte se minimizan.

1. Introducción y justificación

Cuando los movimientos de un terremoto actúan sobre una estructura, pueden afectar gravemente los elementos estructurales dado que son los que absorben la energía de entrada del sismo. Este tipo de daños resultan en procesos complicados de reparación y muchas veces la estructura puede quedar restringida en cuanto a ocupación o uso Karavasilis, et al. (2012).

De allí se deriva la necesidad de desarrollar técnicas o métodos de rehabilitación estructural para edificaciones existentes, que en Colombia ha venido cobrando importancia en las últimas tres décadas. Esta necesidad se justifica en dos aspectos: la mayoría de ciudades de Colombia se encuentran ubicadas en zonas de peligro sísmico intermedia y alto; y por otro lado, muchas de las edificaciones existentes no fueron diseñadas para soportar cargas sísmicas Oviedo J. y Duque M. (2009).

A pesar de que han surgido en los últimos años técnicas de rehabilitación sísmica de edificaciones existentes mediante el aumento de la capacidad de disipación de la energía; difieren de la premisa tradicional de rehabilitación que se ha impuesto en Colombia: aumento de la rigidez y la resistencia de las edificaciones principalmente con el refuerzo con muros estructurales de concreto.

Con base en Lo anterior se vio la necesidad de realizar una innovación en Colombia a través de la adaptación de un dispositivo de disipación de energía de bajo costo y fácil fabricación con el fin de usarlo en la rehabilitación sísmica de pórticos de concreto existentes, como se presenta en las referencias Hossain et al. (2011) y Marín J. y Ruiz D. (2005).

Específicamente se trata de disipadores basados en placas con ranuras, que posicicionados estratégicamente en las edificaciones, concentran el daño y Ia disipación de energía (por histéresis) en los mismos dispositivos disminuyendo los daños en los elementos estructurales.

2. Disipación de la energía inducida por un sismo

En una estructura sometida a movimientos sísmicos, la ley de conservación de energía convierte la energía de entrada en energía elástica y en energía disipada Medeot R. (2000), como se observa en la Ecuación 1:

(1)

Donde:

E1: Energía de entrada.

Ep: Energía potencial.

EK: Energía cinética.

Eß: Energía por amortiguamiento viscoso equivalente.

EH: Energía por deformación histerética.

Se muestra en la Figura 1, un análisis del balance energético obtenido para un sistema inelástico de un grado de libertad sometido a un sismo, con un periodo estructural de 0.3 segundos y con una fuerza de fluencia del 20% de su peso. El amortiguamiento con respecto al crítico es del 3%.

Figura 1. Balance energético de un oscilador simple inelástico sometido a una señal sísmica

 

En la Figura 1 se observa cómo al inicio, toda la energía se transforma en Energía Elástica (EE) bien sea en energía cinética o en deformaciones elásticas (no permanentes). Pero cuando la energía de entrada se hace mayor, aproximadamente el 70% de la energía se disipa por histéresis (EH) y la restante se disipa por amortiguamiento intrínseco de la estructura (Eb).

En un pórtico EH aparece cuando los esfuerzos generados por el sismo en los elementos estructurales superan la región elástica de los materiales y por lo tanto la estructura recurre a la región inelástica. A partir de ese momento parte de la energía inducida por el sismo se traduce en deformaciones inelásticas y en daño. Esto se hace evidente en fenómenos como la fisuración, la fluencia y la aparición de rótulas plásticas.

El objetivo de la tecnología de disipación de energía propuesta es mantener este gran porcentaje de disipación de energía por histéresis, pero reduciendo los daños en los elementos estructurales. Para ello se propone un sistema que canaliza la energía y los daños hacia dispositivos que aprovecha la histéresis de placas con ranuras hechas de acero con una gran capacidad de ductilidad a la deformación unitaria.

3. Disipadores pasivos de energía histeréticos metálicos de placas con ranuras

Actualmente en el mundo existe una gran variedad de dispositivos disipadores de energía sísmica que pueden ser de tipo activo, pasivo y/o semi-activos. En la Figura 2 se ilustra las diferentes técnicas de disipación de energía, y se hace énfasis en los disipadores de energía histeréticos pasivos metálicos que son precisamente el tipo de dispositivos que se estudiarán en el presente documento.

Figura 2. Cuadro conceptual de disipación de energía

 

Los sistemas de disipación pasiva a diferencia de los otros sistemas, se basan en la no dependencia de una fuente de energía para trabajar. Estos sistemas resultan en una estrategia de mitigación más económica a comparación con los otros sistemas y su implementación tiene las siguientes ventajas Sadek et al. (2003):

• Los disipadores pasivos disminuye la respuesta de la estructura ante cargas externas dado al aumento en su amortiguamiento y rigidez.

• Los disipadores absorben gran parte de la energía actuante del sismo, evitando mayores daños en el sistema estructural del edificio. Normalmente la mayoría de estos daños se presentan en los disipadores lo que puede traducirse en un menor costo de reparación ya que estos son reemplazables Symans M., etal. (2008).

Los dispositivos pasivos por fluencia absorben parte de la energía que se genera en la estructura a través de ciclos de histéresis, evitando daños estructurales importantes. Esta energía que reciben los dispositivos hace que fluyan y en el peor de los casos hace que se presente la falla del dispositivo, pero no de los elementos estructurales de la edificación. De acuerdo con Xua Z. et al. (2007), incluso para condiciones críticas como movimientos sísmicos en campo cercano, los disipadores por fluencia pueden reducir simultáneamente el desplazamiento, la aceleración y la energía que deben soportar los elementos estructurales.

Los disipadores histeréticos estudiados en el presente trabajo (Disipadores tipo placas con ranuras) se caracterizan porque la disipación de la energía ocurre por la fluencia del acero, provocado por los desplazamientos relativos en el dispositivo Karavasilis et al. (2012). Este comportamiento puede ser modelado mediante relaciones histeréticas fuerza-desplazamiento. Sus ventajas radican en su comportamiento estable, buena resistencia a factores ambientales y de temperatura.

Las placas ranuradas en acero se ubican en el mismo plano del pórtico a intervenir (Figura 3), por lo tanto trabajan normalmente a fuerzas cortantes.

Figura 3. Disipador de energía tipo placa con ranuras sometida a esfuerzos cortantes

 

Durante los años de desarrollo de este tipo de disipador, se ha estudiado tanto las posibles localizaciones de la platina en la estructura como el tipo de ranuras en las mismas (ranuras circulares, ovaladas, poligonales).

Para garantizar el desempeño y evitar concentraciones de esfuerzos en puntos indeseados de la platina con ranuras, investigadores como Benavent A., Hirishi A. (1999), Kunisue A., Koshika N. y Kurokawa Y. (2000), Reyes J. (2001), Wada A., Huang Y. y Iwata M. (2000), Marín J. y Ruiz D. (2005), Fuentes R., Martínez M. y Ruiz D. (2005), Chan R. y Albermani F. (2008), Chan R., Albermani F. y Williams M. (2009), Karavasilis T., Dimopoulos A. y Hale E. (2012), Chan R., Albermani F. y Kitipornchai S. (2013), Saffari H., Hedayat, A. y Poorsadeghi N. (2013), Ghabraie K., et. al (2010), Oh S., Kim Y. y Ryuc H. (2009) han propuesto diferentes tipos de disipadores con altos niveles de amortiguamiento histerético equivalente y con ciclos de histéresis muy estables.

Los disipadores de energía histeréticos pasivos metálicos de placas con ranuras tienen bajo costo dada la naturaleza del material y la facilidad en fabricación en talleres de metalmecánica. Estos aspectos son muy importantes para países en vías de desarrollo.

4. Caracterización física y mecánica de los disipadores histeréticos metálicos bajo estudio

El diseño de los disipadores es similar a los establecidos por Marín J. y Ruiz D. (2005) y por Fuentes R., Martínez M. y Ruiz D. (2005), quienes se basaron en los trabajos de Reyes J. (2001), Hanson R. y Tsu Soong (2001) y Kunisue A., Koshika N. y Kurokawa Y. (2000).

Marín J. y Ruiz D. (2005) y Fuentes R., Martínez M. y Ruiz D. (2005) trabajaron sobre disipadores a escala 1:2; sin embargo para los ensayos en mesa vibratoria que se presentan en este documento la escala escogida fue de 1:3 por lo que las dimensiones establecidas por los autores originales fueron modificadas por el factor de escala. En ambos casos el acero usado fue A-36. En Marín J. y Ruiz D. (2005) se propuso una placa ranurada conformada por 6 columnas y en la referencia Fuentes R., Martínez M. y Ruiz D. (2005) se propuso un disipador con 6 agujeros circulares. En la Figura 4 se muestra el esquema básico de ambos disipadores con las dimensiones de los mismos a la escala 1:3 que será usada en el presente estudio. El acero usado para la fabricación de estas placas ranuradas fue ASTM-A36. Se incluyen en cada disipador seis agujeros adicionales que servirán para su vinculación a la estructura a rehabilitar. El espesor de estos disipadores fue de 3.2 mm.

Figura 4. Dimensiones de disipadores histeréticos con placas ranuradas a) de 6 columnas Marín J. y Ruiz D. (2005) y b) con 6 agujeros circulares Fuentes R., Martínez M. y Ruiz D. (2005)

 

Es importante mencionar que previo a las pruebas experimentales, se realizó un modelo numérico en donde se pudo determinar que las rótulas plásticas del pórtico a rehabilitar se generaban en las placas ranuradas de laFigura 4 antes que en los elementos estructurales.

Para caracterizar el material implementado para la fabricación de los disipadores se realizaron pruebas de tensión y se determinó que el esfuerzo de fluencia del material era de 254 MPa y el esfuerzo de rotura de 365 MPa. La deformación unitaria máxima del material a la rotura fue de 1 7.5% (mm/mm).

Para obtener las propiedades mecánicas de los disipadores de placas ranuradas de la Figura 4, se diseñó y construyó un marco a través del cual fue posible ensayar simultáneamente dos disipadores de energía. Esta prueba es una adaptación de Ia referencia Reyes J. (2001). En esta prueba experimental se transforman las cargas axiales de una máquina universal de ensayos en una serie de fuerzas cortantes aplicadas en el plano de los disipadores, como las mostradas en la Figura 3. Se instalaron deformímetros para determinar Ia curva fuerza vs. desplazamiento.

Cada par de disipadores fue sometido a ciclos de carga y descarga sin recarga controlados por deformación (ensayos seudoestáticos). Con base en las mediciones realizadas se establecieron las características básicas del comportamiento de los disipadores, como lo son las cargas y deformaciones de fluencia, la rigidez elástica y la inelástica. En la Figura 5 se muestra el montaje de la prueba experimental y el estado de los disipadores al finalizar el ensayo; en donde es evidente que las placas ranuradas se plastificaron.

Figura 5. Montaje del ensayo de caracterización mecánica del disipador con placas ranuradas

 

Los datos de la prueba experimental se adaptaron a un modelo bilineal, que es el más recomendado para disipadores metálicos de comportamiento histerético de acuerdo con Marín J. y Ruiz D. (2005) y Hossain et al. (2011). En la Figura 6 se muestran los resultados experimentales con los datos teóricos de fluencia, que fueron determinados con modelos por elementos finitos (modelo constitutivo elastoplástico).

Figura 6. Curvas experimentales de fuerza cortante vs. desplazamiento en el plano de los disipadores de energía evaluados

 

5. Ensayos en mesa vibratoria

Los ensayos se realizaron en la mesa vibratoria del Laboratorio de Pruebas y Ensayos de la Pontificia Universidad Javeriana. El sistema consiste en una mesa accionada por un actuador dinámico de 100 kN de capacidad de carga que tiene un recorrido total de 250 mm (+/-125 mm) en dirección uniaxial. La plataforma de la mesa vibratoria es cuadrada con 1.5 m de lado y el conjunto actuador-mesa puede generar aceleraciones hasta de 5.0 g en modelos estructurales hasta de 15 kN de peso.

5.1 Pórtico en acero a estudiar

El pórtico en acero está construido a una escala de 1:3, constituído por cuatro columnas distribuidas en tres niveles. La altura entrepisos es de 75 centímetros para una altura total de 2.25 metros. La planta de la estructura es cuadrada de 1.30 m de lado y en cada nivel hay una estructura tipo parrilla en donde se ubica la masa del sistema. Los perfiles, tanto de vigas como de columnas, son tubulares de sección cuadrada de 30 mm de lado y 2.5 milímetros de espesor hechos con acero A36. Las uniones del pórtico son soldadas.

Los modelos fueron instrumentados con 4 galgas extensométricas, 4 acelerómetros sísmicos (uno por piso) y 4 deformímetros electrónicos tipo LVDT (uno por piso). Se usó un sistema de adquisición de datos registrando para cada uno de los 12 canales 2000 datos por segundo. Se registró también el desplazamiento y la fuerza generada por el actuador dinámico. Con los desplazamientos de cada uno de los pisos se determinó la distorsión de entrepiso como porcentaje de la altura (deriva sísmica) que es el valor que en la literatura técnica y científica se relaciona con los niveles de daño y con la efectividad de los dispositivos de disipación de energía pasivos.

El pórtico fue ensayado con y sin la rehabilitación con los dos tipos de disipadores mostrados en la Figura 4. Estos dispositivos fueron instalados en los ejes alineados con la dirección de aplicación del movimiento sísmico. Se instalaron dos disipadores en cada nivel de tal forma que los dos pórticos planos en dirección de la aplicación del movimiento tenían 3 disipadores cada uno para un total de 6 disipadores en el pórtico espacial. En la Figura 7 se muestra el pórtico rehabilitado con disipadores de energía de placas ranuradas con 6 agujeros circulares. Como parte del diseño experimental se desarrollaron modelos numéricos no lineales para el pórtico con y sin los disipadores en un programa de elementos finitos. Con estos modelos se validó que la ubicación, el tamaño y la geometría de los disipadores de energía fueran adecuados para mejorar el comportamiento sísmico del pórtico.

Figura 7. Imagen de pórtico rehabilitado con placas ranuradas con 6 agujeros circulares

 

Según las condiciones de diseño para disipadores de energía histeréticos pasivos metálicos de placas con ranuras, se requiere de un montaje a base de riostras que otorguen una conexión rígida para que la energía de entrada al sistema se concentre en los disipadores y no en los elementos portantes. La instalación de cada uno de los disipadores al pórtico se realizó mediante dos riostras. Cada riostra estaba conformada por 2 ángulos de aletas iguales de 50 mm de lado y 6.35 mm de espesor para un total de 4 ángulos por disipador.

5.2 Sismos usados

Se utilizaron señales sísmicas acordes con la amenaza sísmica de Bogotá, capital de Colombia. Se usaron dos de las señales sísmicas de la referencia Marín J. y Ruiz D. (2005). Una de las dos señales corresponde a un sismo de origen cercano a la ciudad de Bogotá, con epicentro inferior a 5 km (Figura 8a). La otra señal corresponde a una señal de origen regional, con epicentro a 40 km (Figura 8b).

Figura 8. Señal de aceleración vs.tiempo para registro de a)sismo cercano y b)sismo Regional

 

Las anteriores señales fueron modificadas de acuerdo con lo establecido por Harris H. y Sabnis G. (1999) para modelos a escala (leyes de la similitud), de tal manera que la señal sísmica que generó movimientos al pórtico de acero instrumentado tuvo una duración de la señal menor pero con un mayor nivel de aceleración.

5.3 Estimación experimental de los periodos de los modelos estudiados

Con el fin de calcular el periodo experimental de los tres tipos de modelos ensayados en la mesa vibratoria (sin disipadores, con disipadores de placas ranuradas con 6 columnas y con disipadores de placas ranuradas con 6 agujeros) se hicieron mediciones de vibración libre. Con este periodo se calibraron los modelos numéricos elaborados en el programa SAP 2000 CSI (2012). Las comparaciones de los periodos estructurales se muestran en la Tabla 1.

Tabla 1. Resumen de resultados de los periodos fundamentales de la estructura

 

En la Tabla 1 es evidente que la presencia de los disipadores de placas ranuradas rigidizan el pórtico lo que se refleja en la disminución de su periodo natural de vibración. Así mismo los disipadores con placas ranuradas con 6 agujeros son más rígidos que los de 6 columnas metálicas, tal como se mostró en la Figura 6.

5.4 Distorsión de entrepiso (deriva sísmica) y comportamiento de los modelos ante señales sísmicas de movimiento en la base

En las Figuras 9 y 10 se presentan los resultados experimentales para las distorsiones de entrepiso (derivas sísmicas) más críticas en los ensayos realizados en la mesa vibratoria. Se presenta para cada modelo con disipadores de energía de placas ranuradas la deriva crítica para los dos sismos analizados. Las distorsiones de entrepiso se calculan como el desplazamiento del piso superior menos el desplazamiento del piso inferior dividido entre la altura del piso (en %). En cada una de las gráficas se muestra la deriva de la estructura con y sin la rehabilitación con los disipadores.

Figura 9. Deriva sísmica máxima en el pórtico de acero rehabilitado con placas ranuradas de 6 columnas

 

Figura 10. Deriva sísmica máxima en el pórtico de acero rehabilitado con placas ranuradas con 6 agujeros redondos

 

A manera de resumen, en la Tabla 2 se presentan los valores de derivas máximas para cada uno de los modelos experimentales.

Tabla 2. Resumen de resultados de los periodos fundamentales de la estructura

 

De acuerdo con los anteriores resultados, se observa una disminución importante en las derivas al rehabilitar el pórtico con disipadores de energía histeréticos metálicos de placas ranuradas. El pórtico sin disipadores tuvo una deriva máxima de 1.34%, el pórtico rehabilitado con placas ranuradas de 6 columnas tuvo una deriva máxima de 0.35 % y el pórtico rehabilitado con placas ranuradas con 6 agujeros redondos tuvo una deriva máxima de 0.13 %. Estos resultados implican una reducción del 74 % y el 90% en las derivas máximas lo cual es consistente con las referencias Marín J. y Ruiz D. (2005) y Fuentes et al. (2005). Estas reducciones se ven reflejadas directamente en un menor nivel de esfuerzo para las uniones viga columna y en la disminución automática de los daños en elementos no estructurales. De acuerdo con los anteriores resultados aunque ambos disipadores generan un mejoramiento notable en el comportamiento mecánico del pórtico, el disipador basado en placas ranuradas con agujeros redondos tiene un mayor y mejor efecto en el sistema estructural, aunque es claro que dicho disipador es más rígido y resistente.

Para verificar que los disipadores estuvieran aportando rigidez, resistencia y capacidad de ductilidad al pórtico rehabilitado (con placas ranuradas con 6 columnas metálicas), se llevó a cabo un barrido de frecuencias con desplazamiento controlado de la mesa vibratoria. Para ello, y para un desplazamiento de 2 mm de la mesa vibratoria (con una función sinusoidal), se incrementó la frecuencia de movimiento desde 1Hz hasta 10 Hz.

Simultáneamente se registraron los desplazamientos totales en la cubierta del pórtico. Debe recordarse que la frecuencia de resonancia del pórtico fue de 1 0.6 Hz (0.094 s). En la Figura 11a se observa dicho registro de desplazamiento de la cubierta. Es evidente que al llegar a los 97 segundos a un desplazamiento total de 8 mm (desplazamiento relativo de 6 mm) a la frecuencia de resonancia del pórtico; se indujeron ciclos de carga y descarga en los disipadores que originaron una falla de los mismos por fatiga como se evidencia en la Figura 11b.

Figura 11.a) Desplazamiento total en la cubierta para diferentes frecuencias y una misma amplitud de desplazamiento de la mesa vibratoria, b) Falla de los disipadores por fatiga

 

Para poder llegar al anterior resultado fue necesario aplicar 630 ciclos de carga y descarga a los disipadores histeréticos, lo cual es muy poco probable que suceda durante un evento sísmico real, en donde a lo sumo estarían sometidos a 10 ciclos de carga y descarga con esfuerzos cercanos a los de fluencia. Esto apunta a que este tipo de disipadores de energía tendrían ciclos histeréticos estables, con un adecuado nivel de disipación de energía y con una disminución de los daños elementos estructurales y no estructurales como consecuencia de la disminución de los niveles de deriva sísmica.

6. Conclusiones

• Los disipadores histeréticos pasivos metálicos de placas ranuradas instalados en el pórtico bajo análisis, modificaron las características dinámicas de éste. Por esto disminuyó el periodo fundamental del pórtico de 0.22 segundos a 0.094s y 0.047 s para la estructura con disipadores de placas ranuradas con columnas y con agujeros redondos, respectivamente.

• Los disipadores lograron absorber gran parte de la energía de entrada de los movimientos sísmicos de la mesa vibratoria. Gracias a la capacidad de disipación de energía de las placas con ranuradas que componen éstos disipadores, lograron disminuir las fuerzas que actúan directamente en los elementos estructurales del pórtico. Por lo tanto, la vulnerabilidad sísmica del pórtico disminuyó.

• De acuerdo con los resultados experimentales, se obtuvo una reducción importante de la distorsión de entrepiso para los sismos bajo análisis en todos los niveles del pórtico. Los disipadores de placas ranuradas con agujeros redondos redujeron la deriva máxima en un 90%, mientras que los disipadores de placas ranuradas con columnas metálicas disminuyeron la deriva en un 74%.

• El buen funcionamiento de la rehabilitación depende del diseño de los disipadores a implementar. El presente trabajo se desarrolló con base en un pórtico en particular, con características dinámicas propias del mismo y analizado bajo efectos sísmicos previamente designados. Es por esto que para rehabilitar una estructura con este tipo de disipadores de placas ranuradas es necesario realizar un análisis dinámico previo de la estructura considerando la peligrosidad sísmica de la edificación.

Juan Pimiento*, Andrés Salas*, Daniel Ruiz1*

* Pontificia Universidad Javeriana. COLOMBIA

sábado, 20 de diciembre de 2014

Estimación de La Vulnerabilidad Sísmica de una Edificación Indispensable Mediante Confiabilidad Estructural


En el presente trabajo se resumen los resultados de la evaluación de la vulnerabilidad sísmica (física) del sistema estructural de una edificación indispensable usando las técnicas de confiabilidad estructural. El proyecto de investigación se basó en recopilación de información existente (planos, memorias de cálculo, etc), estudios de patología, levantamiento estructural y la evaluación de amenaza sísmica local.   Para evaluar la capacidad a cortante de la estructura se realizó un análisis estático no lineal de “pushover” de tres(3) modelos estructurales del edificio, variando su rigidez en función de cien(100) datos del modulo de elasticidad y la resistencias a la compresión del concreto. El primer modelo es el original sin refuerzo, el segundo es rehabilitado con diagonales concéntricas de acero y el tercero consiste en un muro en concreto reforzado. La demanda se evaluó al realizar un análisis dinámico espectral de los tres(3) modelos estructurales. Variando la solicitación incluyendo en los modelos estructurales doce(12) espectros de respuesta con diferentes periodos de retorno y además su rigidez al cambiar su módulo de elasticidad. Mediante la comparación entre la resistencia a cortante de la edificación (tomado de las curvas de capacidad) y la demanda a cortante en los modelos producida por los efectos de los diferentes espectros de respuesta, se estimaron las probabilidades anuales de falla. Así mismo se calcularon las probabilidades anuales de falla, empleando el desplazamiento espectral en el punto de desempeño. De acuerdo con los resultados basados en confiabilidad se identificó un riesgo inminente y niveles de seguridad inadecuada de la estructura sin rehabilitar cuando es sometida a un evento sísmico. Por esta razón, se evaluó desde el punto de vista de la confiabilidad estructural, la alternativa de rehabilitación mediante muros de concreto reforzado y diagonales de acero. De esta manera se determinaron probabilidad anuales de falla menores para la estructura rehabilitada, que representa una disminución del riesgo. Además se realizó un análisis aproximado de beneficio – costo, procedimiento útil en el momento que se desee rehabilitar la edificación indispensable.

1.  ANTECEDENTES Y JUSTIFICACIÓN

El Congreso de la República de Colombia expidió una serie de leyes para que a las edificaciones cuyo uso se clasifique como indispensable y de atención a la comunidad, localizadas en zonas de amenaza sísmica alta e intermedia construidas con anterioridad al año 1998, se les evalúe su vulnerabilidad sísmica. Por esta razón en el año 2001 se llevó a cabo un estudio de vulnerabilidad sísmica estructural de las instalaciones de una edificación indispensable para lo cual se llevaron a cabo diferentes actividades que se describirán a continuación:

1.1 Recopilación de información existente y visitas técnicas de inspección

En esta etapa se recopiló la información disponible tal como planos estructurales y arquitectónicos, memorias de cálculo, estudios de suelos y diversos documentos técnicos de vital importancia para el estudio de vulnerabilidad estructural. Se realizaron visitas técnicas de inspección a las edificaciones donde se pudo establecer criterios básicos para el desarrollo del estudio. Adicionalmente en estas visitas técnicas se verificaron las dimensiones de los elementos principales de la estructura así como la ubicación y distribución del refuerzo de acero corroborando la información de los planos estructurales. Así mismo se ubicaron las zonas estratégicas para la ejecución de ensayos parcialmente destructivos y no destructivos para las evaluaciones de patología estructural. Para ello se llevaron a cabo auscultaciones con equipos de detección de refuerzo mediante técnicas no destructivas. Así mismo se verificó que el sistema estructural de la edificación corresponde a pórticos de concreto resistentes a momento con un sistema de entrepiso en sistema reticular celulado.

1.2  Evaluación patológica

Se adelantaron análisis de las características de los aceros de refuerzo y la resistencias de los concretos, por parte del Laboratorio de Resistencia de Materiales del Departamento de Ingeniería Civil. Se realizó un programa de investigación que minimizó la cantidad de núcleos a extraer y se complementaron esos resultados con Ensayos No- Destructivos. Se ensayaron en total 50 núcleos y se tomaron 188 lecturas de Velocidad del Pulso Ultrasónico.

1.3  Estudio de amenaza sísmica local

Con el fin de estimar la amenaza sísmica local se desarrolló una exhaustiva investigación de las características y propiedades del suelo de cimentación del edificio mediante la ejecución de cuatro (4) sondeos de alrededor de 15 m de profundidad. Con estos sondeos se verificó el perfil estratigráfico y las propiedades índices de las diferentes capas de suelo bajo la cimentación de la estructura. Se realizaron ensayos de laboratorio y de campo tales como triaxiales, "down hole" y "cross hole", con los cuales se determinaron las principales propiedades dinámicas del suelo (velocidad de onda de corte, variación del módulo de corte y del amortiguamiento en función de la deformación angular). A partir de esta caracterización y con base en modelaciones analíticas y en consideraciones probabilísticas, fue posible estimar, además de las propiedades mecánicas del suelo, la función de transferencia del estrato de suelo desde la roca hasta la superficie y el espectro de respuesta local a usar en la evaluación de la vulnerabilidad sísmica. Con base en esta información se evaluaron los doce(12) espectros de repuesta para el análisis mediante confiabilidad estructural, lo cual se expone en el numeral 2.3 del presente documento.

1.4  Evaluación de la vulnerabilidad sísmica estructural

Para llevar a cabo el estudio de la vulnerabilidad sísmica estructural, se decidió tomar como guía para el estudio el documento FEMA-310. Con base en esta referencia se elaboró una evaluación conceptual preliminar detectando los siguientes aspectos: deficiente detallado de refuerzo de las vigas y en los nudos, inadecuado traslapo en el refuerzo de columnas y vigas, demasiado espaciamiento de flejes en columnas, excentricidad en los nudos, placas delgadas, discontinuidad del diafragma, irregularidad en planta y edificios adyacentes (golpeteo). Como complemento a lo anterior se llevó a cabo una modelación analítica de las estructuras para poder realizar la evaluación y revisión del comportamiento sísmico y dinámico de la edificación indispensable. Se elaboraron diferentes modelos planos y tridimensionales en el programa SAP - 2000, los cuales se presentan en las Figura 1.1 Mediante un análisis elástico lineal, se desarrollaron modelos espaciales conformados por elementos “frame” y shell.
Figura 1.1 Modelos estructurales de las edificaciones bajo estudio
Para el caso de los edificios con entrepiso en reticular celulado, se consideró la rigidez equivalente de las vigas, como una sección rectangular correspondiente a la suma de las viguetas que convergen al capitel más una zona rígida que proporciona el capitel aligerado. Con base en los modelos analíticos se estimaron los niveles de deriva en las edificaciones para las solicitaciones sísmicas. En la Figura 1.2 se presenta un resumen de las derivas encontradas, las cuales varían entre 1.0% y 3.0%, lo que indica que son estructuras en general flexibles y no cumplen con las recomendaciones de la Norma Colombiana (máximo 1 %). Lo anterior adquiere mayor importancia si se tiene en cuenta que los edificios con entrepisos en sistema reticular celulado pueden presentar fenómenos de punzonamiento cerca de los capiteles para derivas de entrepiso altas, tal como sucedió en diversos edificios de la ciudad de México en el año de 1985.  Por otro lado al analizar los índices de sobreesfuerzo en columnas y vigas se concluyó que la edificación es crítica principalmente por el alto número de fallas de tipo frágil que podrían generar un colapso parcial ante la ocurrencia de un evento sísmico. Se detectaron posibles fallas por cortante, flexión y compresión en las columnas así como por cortante y flexión en las vigas de acuerdo con las especificaciones del FEMA 310 –356 y la Norma Colombiana. En particular son preocupantes los altos niveles de esfuerzos cortantes encontrados en las estructuras con entrepiso en sistema reticular celulado tal como se mencionó anteriormente.
Figura 1.2 Resumen de las derivas de diferentes edificaciones

domingo, 7 de diciembre de 2014

Tipos de falla en los muros de concreto de edificios chilenos en el sismo del 27 de febrero de 2010

 

El sismo de Chile del 27 de febrero del 2010, tuvo características excepcionales en cuanto a magnitud, duración, aceleraciones, contenido de frecuencias, poder destructivo, etcétera. El terremoto produjo un nivel considerable de daños estructurales en varios edificios de concreto armado de diversas alturas, particularmente en los ubicados sobre suelos blandos, susceptibles de amplificar las aceleraciones sísmicas de manera sustancial. En especial, se dieron fallas en los muros estructurales de concreto armado de carácter repetitivo en muchos edificios, cuya naturaleza fue discutida por especialistas peruanos, sin que se llegara a un consenso. En este artículo se comentan algunos tipos de fallas, a partir de investigaciones realizadas y basadas también en los códigos de diseño del ACI chileno y peruano para, de esta manera, aprovechar las lecciones dejadas por este sismo, así como para proponer mejoras en el diseño estructural.
Introducción
El terremoto ocurrido el 27 de febrero del 2010 en Chile, produjo fuertes daños en numerosas edificaciones (edificios, obras portuarias, obras viales, naves industriales, etc.) construidas con diversos materiales (concreto armado, albañilería, acero, tierra cruda, etc.). En particular, fue notorio el daño presentado en edificios de concreto armado, estructurados con muros, columnas y vigas. Llamó la atención la formas de falla repetitiva que exhibieron los muros de concreto armado; en especial, la falla horizontal localizada en la zona superior de los muros con el pandeo del refuerzo vertical interno. Ello originó un debate entre especialistas peruanos en estructuras, sin que se llegara a unconsenso; de ahí que es importante conocer las causas de estas fallas para que no se repitan en sismos futuros, o al menos, que sus efectos queden atenuados. Es por esto que se presentan en este artículo una serie de comentarios sobre estas fallas, contemplando las investigaciones experimentales realizadas y las especificaciones reglamentarias de tres códigos de diseño estructural.
Características del sismo
De acuerdo a la información del Servicio Geológico de los Estados Unidos (USGS por sus siglas en inglés), (Ref.1 y Fig.1), el sismo tuvo una magnitud Mw=8.8; produjo fuertes daños en una extensa zona, incluyendo a la capital, Santiago, ubicada a 325 km del epicentro, así como en otras ciudades como Concepción, situada a 115 km del epicentro. El foco fue localizado a 35 km de profundidad.
En Santiago, según la información proporcionada por Boroschek, et. al. 2010 (Ref. 2), las aceleraciones horizontales máximas en suelo de buena calidad, oscilaron entre 0.17 y 0.30 g, con un promedio de 0.24 g. Sin embargo, en la Comuna de Maipú (distrito de Santiago, Fig.2), esta aceleración fue de 0.56 g, 2.3 veces mayor que el valor promedio registrado en suelo duro, lo que se atribuye a las características particulares del suelo de Maipú.
El promedio de la aceleración horizontal en suelo duro (0.24 g) de Santiago -a 325 km del epicentro-, fue menor que el valor utilizado en suelo duro para efectos de diseño estructural para la zona sísmica 2 (0.3 g, Ref.3). Sin embargo, si bien la Norma Sísmica Chilena (Ref. 3) ubica a Santiago en la zona sísmica 2, en la Fig. 18 se aprecia que la ciudad está localizada prácticamente en la frontera con la zona sísmica 3, donde la aceleración de diseño en suelo duro es 0.4 g, por lo que en Santiago, desde el punto de vista estructural, el sismo en cuestión debió haberse catalogado como "moderado"; aún así, produjo fuertes daños estructurales. Al cierre de este artículo, se tiene conocimiento de que en Concepción, a 115 km del epicentro, la aceleración horizontal máxima registrada fue 0.65 g (Ref.4) y 0.4 g (Ref.13); sin embargo, aún no se conoce el tipo de suelo donde estuvieron ubicados los acelerógrafos.
Formas de falla en los muros de concreto armado
En las visitas de reconocimiento efectuadas por Quiun, Silva y Blanco (Ref. 5), así como por las fotografías extraídas de internet, se observan las clásicas fallas por flexión, las de fuerza cortante y las de deslizamiento en los muros de concreto armado, producidas también en los diversos terremotos ocurridos en el mundo (Ref. 6). Sin embargo, llamó 2 la atención una forma de falla horizontal, localizada en la parte superior de los muros, con un pandeo del refuerzo vertical interno. Puesto que para los autores esta forma de falla no tiene antecedentes, y porque se presentó en muchos edificios, se le trata en forma especial más adelante. Debe mencionarse que el momento flector, la carga axial y la fuerza cortante, actúan de manera simultánea durante el sismo, y que sus valores máximos tienen lugar en los primeros pisos del edificio, por lo que es allí donde tienden a presentarse las fallas, que inclusive pueden darse por una combinación de las tres fuerzas de sección mencionadas.
Falla por flexión
Este tipo de falla se presenta cuando la capacidad de resistencia a la fuerza cortante (proporcionada por el refuerzo horizontal y el concreto) supera a la de flexión (generada por el refuerzo vertical y la carga axial). Esta falla se caracteriza por el balanceo del muro en torno a sus extremos, transmitiéndose gran parte de la carga vertical (P, en la Fig. 3) por el extremo comprimido, lo que puede originar la trituración del concreto con el subsiguiente pandeo del refuerzo vertical, en caso de que no exista confinamiento en los extremos (caso muy común en los edificios chilenos, Fig.4). Aunado a esto, experimentalmente se ha observado (Ref. 8) que una vez formada la grieta de tracción por o flexión en el borde del muro, el refuerzo vertical al trabajar en tracción o compresión, trata de expulsar al concreto. Estas continuas aberturas y cierres de las grietas, son las causantes de la trituración del concreto en el borde carente de confinamiento.




Cabe indicar que sólo los bordes libres (sin muros transversales) necesitan ser confinados con estribos a corto espacia-miento, puesto que en el extremo con muros transversales largos, el área flexocomprimida se incrementa notoriamente, aparte que los muros transversales proporcionan confinamiento al muro en análisis (Fig. 5). Asimismo, el refuerzo vertical existente en los muros transversales y la carga de gravedad que baja por esos muros, incrementan notoriamente la capacidad resistente a flexión del muro en análisis y tratan de evitar que se desarrollen las grietas de tracción por flexión en esa unión entre muros. En la Fig. 5, no puede afirmarse que la falla haya sido netamente por flexión; si esto hubiese sido así, los giros por flexión en el muro hubieran sido importantes y habrían generado la formación de una rótula plástica en la viga que arriba coplanarmente al muro; asimismo, se hubiesen presentado otras fisuras de tracción por flexión en el muro y la falla hubiera quedado concentrada principalmente en su base. Como lo indicado no ocurrió, se piensa que la falla del muro se debió a una acción combinada de flexión y fuerza cortante, agravada por la carga vertical concentrada que transmiten las vigas en el extremo libre superior del muro.


Conviene señalar que la falla por flexión trata de concentrarse en la zona más débil del muro, por ejemplo, donde hay una reducción significativa de su longitud (Fig. 6), evidentemente porque la capacidad resistente a flexión en la zona más larga del muro es mayor que la existente en la zona de menor longitud.



sábado, 6 de diciembre de 2014

Una Probada Forma Económica de proteger Edificios contra Terremotos

En 1985, trabajadores de la construcción en la ciudad del sur de California de Rancho Cucamonga pusieron los toques finales a un edificio de aspecto todavía revolucionaria sin complicaciones. Comunidades Foothill Derecho y Centro de Justicia es un tribunal de cuatro pisos, ubicado a sólo 12 kilómetros de la falla de San Andrés, la grieta en la corteza terrestre responsable de la devastadora magnitud 7,9 terremoto que azotó el sur de California en 1857 y el terremoto infame 1906 en San Francisco. Los geólogos creen que el fallo se debe a un "grande" con una magnitud que podría superar los 8,0. Si y cuando eso viene, se prepararán las Comunidades Ley Foothill y el Centro de Justicia, no porque está anclada en piedra, sino porque se sienta encima de sus cimientos en las almohadillas de goma.
Foothill-ley-justicia-centro
El Comunidades Foothill Ley y Justicia Center en Rancho Cucamonga, California
Durante décadas, los ingenieros han estado utilizando caucho en edificios y estructuras. Desde la década de 1950, se ha instalado en puentes de carreteras para hacer frente a la expansión térmica y en los edificios para sofocar las vibraciones de los trenes y carreteras, aunque no fue hasta la década de 1980 que el compuesto fue finalmente utilizado para aislar los edificios de los terremotos.Cuando se hayan instalado cojinetes de goma, que han sido un gran éxito, y si se utiliza más ampliamente, tienen el potencial de salvar incontables vidas y evitar miles de millones de dólares en daños.
A pesar de ello, muchos edificios todavía carecen de la protección que viene con la ingeniería sísmica adecuada. En los países en desarrollo, el problema es particularmente agudo. Tome el terremoto de magnitud 7,0 que azotó a Haití en 2010 y mató a más de 100.000 personas, muchos de los cuales perecieron cuando los edificios se derrumbaron. Estructuras vulnerables también plagan los países desarrollados como los Estados Unidos. Una reciente investigación realizada por el diario Los Angeles Times descubrió que más de 1.000 mayores edificios de concreto en la ciudad podrían colapsar en el próximo gran terremoto.
Hay muchas maneras de hacer un edificio resistente ante los terremotos. En las estructuras de madera, esparadrapos adicionales se pueden clavar a partes clave de la trama. Concreto reforzado con acero es otra opción, con las fortalezas y debilidades de cada compuesto compensando la otra, aunque incluso eso puede no ser suficiente para evitar daños en un gran terremoto. Algunos edificios utilizan amortiguadores similares a los amortiguadores de un coche. El más efectivo, sin embargo, puede haber aislamiento de la base, donde el edificio está separado de la tierra usando amortiguadores o cojinetes.
loma-prieta-daño
Los edificios que no están diseñados o mejoramiento de resistir un terremoto pueden sufrir fallas catastróficas.

domingo, 23 de noviembre de 2014

Análisis estructural, sísmico y geotécnico de la iglesia de Sant' Agostino en L'aquila (Italia

A menudo, las construcciones existentes en albañilería son el resultado de construcciones, cambios y modificaciones que se han ido desarrollando durante siglos. Por lo tanto, las adaptaciones y mejoras de las edificaciones en albañilería deben ir acompañadas de un nivel adecuado de conocimiento de su historia. Las trágicas consecuencias de los recientes terremotos ocurridos en Italia y otros países, han llevado a pensar que, a veces, la causa del daño sísmico podría ser justamente una errada intervención de la mejora o adaptación que se les ha realizado. En la mayoría de los casos, este hecho es atribuible a las modificaciones realizadas sin tener los conocimientos necesarios sobre las normas constructivas de esa edificación. El estudio de caso presentado en este trabajo se refiere al análisis sísmico de la iglesia de Sant' Agostino en L'Aquila (gravemente dañada por el sismo ocurrido en abril de 2009), y considera en profundidad los tres niveles de evaluación de la seguridad sísmica establecidos en el Código Italiano para la evaluación y reducción del riesgo sísmico del patrimonio cultural Eurocode 8: Design of structures for earthquake resistance, (2003), Decreto Legislativo (2004), Norme tecniche per le costruzioni, DM. (2005), Norme tecniche per le costruzioni, DM. (2008), Circolare n. (2010), Direttiva del Presidente del Consiglio dei ministri per la valutazione e la riduzione del rischio sismico del patrimonio culturale con riferimento alle Norme Tecniche per le Costruzioni. G.U. (2008). Así, para el LV1 (Nivel de evaluación 1) se realizaron todos los análisis exigidos en los anexos de la Directiva del 10 de diciembre de 2007, comenzando por el Módulo A que corresponde al "registro de identificación", continuando con el Módulo B que se refiere al estudio de los "factores de sensibilidad" y finalizando con el Módulo C que considera la "morfología de los elementos". A partir de esta evaluación, hemos concluido que la aceleración máxima del terreno durante el sismo del 6 de abril de 2009 superó el valor de aceleración correspondiente a los estados límite de colapso. Para el LV2 (Nivel de evaluación 2), nos enfocamos principalmente en la verificación de todos los macroelementos como una fuente potencial del mecanismo de daños. Descubrimos que los mecanismos ocurridos estaban mayormente relacionados con la fachada, la nave, la cúpula, el ábside/presbiterio, la techumbre, capillas laterales, las juntas entre la alineación horizontal y vertical, y por último, el campanario. Un vez recopilados todos los datos relacionados con el sitio, la geometría de la construcción, las características de los materiales, la estructura, el suelo, etc., realizamos un análisis modal a la estructura utilizando el Método de Elemento Finito dinámico (FEM, en inglés), válido para el LV3 (Nivel de evaluación 3). Además, estos ensayos dinámicos son esenciales para la evaluación de la seguridad sísmica y poseen la ventaja de no ser destructivos. Finalmente, el análisis entregó los modos de vibración más importantes y sugirió las intervenciones estructurales óptimas para reparar el daño existente y evitar la formación de los mismos mecanismos bajo la acción de un futuro sismo.
1. Aspecto histórico
El caso propuesto constituye la síntesis de análisis estructural y sísmico de la iglesia de Sant' Agostino en L'Aquila, gravemente dañada por una serie de sismos ocurridos en abril de 2009, realizada mediante una profunda comprensión tanto histórica como científica de la edificación.
La construcción de Ia iglesia data de comienzos del 1700. En Ia actualidad, Ia iglesia persiste, al menos parcialmente, en el emplazamiento de otra iglesia fundada en 1282 y dedicada a San Agustín (Cacciamali et al.,2010). La iglesia original fue seriamente dañada por diversos sismos, quedando destruida por un sismo ocurrido el año 1703. El proyecto de Ia actual iglesia pertenece al arquitecto Giovan Battista Contini y data de fines de 1708 y terminándose, probablemente, hacia 1725 (Cacciamali etal., 2010; Gavini I. C, 1926).
En su fase medieval, Ia iglesia tenía una planta en forma de cruz latina, con tres naves y crucero, ábside al fondo y Ia fachada principal orientada hacia el oeste, hacia las calles adyacentes en lugar de mirar hacia Ia plaza. Fue Ia iglesia de las tres órdenes mendicantes que residían en L'Aquila: los Agustinos, después de los Franciscanos y Dominicanos (Figura 1).

Figura 1. La iglesia medieval
En la iconografía de Ia ciudad de 1622 y 1680, la presencia de Ia fachada retranqueada de coronamiento recto, que caracterizaba a la iglesia original, apoya la teoría de la persistencia de su implante medieval (modificado posiblemente en 1656 con la introducción de la apertura principal hacia la plaza) hasta su colapso debido al sismo de 1703, cuando Contini trazó una nueva arquitectura, cubierta por una cúpula y abierta hacia la plaza pública (Cacciamali et al., 2010; Antonini, 2004; Antonini 1999; Chiodi, 1988).

Figura 2. Iconografía de la iglesia después de abrir la puerta principal hacia la plaza
2. Descripción de la iglesia
La iglesia posee un plano longitudinal, la entrada se abre hacia un pequeño atrio cubierto por un techo inclinado, seguido por una nave de forma elíptica, coronada por una cúpula y por un largo ábside, cubierto por una bóveda cilíndrica. A ambos lados de la nave, tiene tres pares de capillas: las capillas mayores están ubicadas en el eje ortogonal principal, mientras que las capillas menores se ubican en los ejes diagonales. En el exterior un sistema de machones. El domo que se levanta sobre la nave tiene un largo máximo de veinte metros, se encuentra reforzado con cuadernas y coronado por una linterna.

Figura 3. Planta de la iglesia de Sant' Agostino
La fachada está dividida en dos partes, estructurada en una parte inferior y una superior. La parte inferior corresponde al cabezal del atrio; la parte superior está retranqueada unos siete metros aproximadamente y forma una de las caras del prisma octagonal de la linterna. La articulación escultórica de la fachada es simple y esencial, realzada por un medallón circular en alto relieve que representa a San Agustín. Un tímpano trapezoidal rematado en una balaustrada, enmascara el techo a dos aguas que corona la entrada y unifica las dos secciones de la fachada (Cacciamali et al., 2010; Ceravolo R., 2010; Calderini y Lagomarsino S., 2009).

Figura 4. Iglesia de Sant' Agostino antes y después del sismo ocurrido en abril de 2009
La iglesia está construida en albañilería. En el análisis visual, se observa que todas las superficies abovedadas, los arcos y las vigas (visibles por la caída del yeso) son de albañilería de ladrillo de excelente calidad. En cambio, todas las estructuras verticales son de albañilería mixta piedra/ladrillo de mediana calidad, con esquinales bien conectados en piedras cuadradas. Los machones son de piedra cuadrada de excelente calidad (Fiengo y Guerriero 2008). En algunos casos, sobre los dinteles de las aberturas externas, se reconocen elementos de refuerzos en madera. En el interior del edificio, no se aprecian cadenas metálicas a la vista. Sin embargo, algunos cabezales de cadenas metálicas, que señalan su presencia, son visibles en los muros exteriores. El diagrama de la Figura 5 muestra una distribución hipotética de las cadenas dentro de la estructura (Ceravolo, 2010; Calderini y Lagomarsino, 2009). Cabe señalar que los cabezales de las cadenas son sólo visibles en el muro externo libre que da hacia la Via Sant' Agostino y no en el que enfrenta la Prefectura.


Estimación del daño sísmico en edificaciones de mampostería


En el presente trabajo se aplica un modelo de evaluación del nivel de daño que pueden alcanzar las edificaciones de mampostería de una ciudad ante un determinado evento sísmico, el cual fue construido para condiciones propias de nuestro país. El modelo se basa en la aplicación de funciones de vulnerabilidad o matrices de probabilidad de daño, elaboradas a partir de técnicas de simulación. Las funciones están propuestas para valores de aceleración máxima desde 0,02 g a 0,25 g, y su utilización se recomienda a gran escala. El modelo fue aplicado a una población ubicada al nororiente colombiano, dentro del área metropolitana de Bucaramanga. Para su aplicación fue necesario realizar levantamiento en campo de la información básica de las edificaciones de la zona de estudio. En la construcción de las funciones y matrices se utilizó el estudio de amenaza sísmica existente. Con la información disponible, se aplicó el modelo implementando herramientas computacionales, y con ellas se elaboraron los mapas de daños para diferentes eventos sísmicos. Los resultados demostraron la aplicabilidad y sencillez del modelo, dado que para estimación de la vulnerabilidad de las edificaciones se requiere información general de las edificaciones, la cual es de fácil recolección en campo, y para la estimación del daño ante una acción determinada se utilizan directamente las funciones propuestas.
1. INTRODUCCIÓN
En el territorio colombiano muchas de sus poblaciones se han desarrollado a través de edificaciones de baja altura en el sistema estructural de muros en mampostería, sea confinada, sin confinar, reforzada o no reforzada. A su vez, algunas de estas edificaciones se han construido sin parámetros sismorresistentes, a pesar de encontrarse ubicadas en zonas de amenaza sísmica alta. Asimismo, ciertos desarrollos urbanos dentro de las ciudades se han desplegado desordenadamente sin planificación, pues han nacido y crecido atendiendo las necesidades básicas de vivienda económica de sus habitantes. Por todo lo anterior es fundamental desarrollar estudios de vulnerabilidad sísmica de estas zonas, que permitan visualizar y cuantificar el nivel de riesgo al que se encuentran expuestas. Luego, ante la necesidad de estos estudios es importante aplicar metodologías que tomen en consideración las características propias del desarrollo de estas poblaciones, y para ello es importante construir o aplicar modelos propios.
Dentro de este contexto se encuentra la ciudad de Bucaramanga y su área metropolitana donde las edificaciones que predominan son de, máximo, tres niveles en mampostería no siempre confinada (Maldonado y Chío, 2007). En el interior del área metropolitana se halla la población de Floridablanca la cual cuenta con desarrollos urbanos, algunos subnormales, ubicados en zonas de alta pendiente, los cuales son preocupación de las entidades gubernamentales del municipio. Luego, dado el interés en conocer el nivel de daños que puede alcanzar esta zona ante los eventos sísmicos propuestos en el estudio de zonificación sismo geotécnica indicativa de la ciudad de Bucaramanga (Ingeominas y CDMB, 2002).
Para la evaluación de la vulnerabilidad sísmica de Floridablanca no se contaba con registros de datos reales ni con información experimental; por ello se tomó la decisión de usar técnicas basadas en opinión de expertos, combinadas con procesos analíticos, y para ello se utilizó la metodología sugerida por Maldonado et al. (2007), la cual propone aplicar funciones de vulnerabilidad sísmica o matrices de probabilidad de daño a partir de un calificativo de la edificación, llamado índice de vulnerabilidad. Las funciones fueron aplicadas para los dos escenarios sísmicos más probables, y los resultados demostraron la aplicabilidad del modelo utilizado.

2. METODOLOGÍA UTILIZADA
El nivel da daño que pueden alcanzar las edificaciones del área de estudio, sometida a una determinada acción sísmica se puede obtener mediante dos procedimientos: el primero, por medio de las denominadas matrices de probabilidad de daño, y el segundo a través de las funciones de vulnerabilidad. Los principales métodos utilizados para la generación de las matrices de probabilidad de daño o funciones de vulnerabilidad difieren básicamente en los datos de entrada y en la forma como se obtienen las probabilidades asociadas a cada estado de daño; luego, estos pueden ser métodos basados en observaciones de campo, experimentales, basados en al opinión de expertos y métodos analíticos. Dependiendo de la información con la que se cuente se podrá utilizar uno u otro método, o se podrán combinar. En el caso de aplicación a ciudades colombianas como Floridablanca en el área metropolitana de Bucaramanga, se han construido funciones y matrices basadas en opinión de expertos y en técnicas de simulación (Maldonado et al., 2007). Estas funciones fueron construidas a partir de la simulación de las características de edificaciones que definen su respuesta ante una acción sísmica, y mediante la estimación de vulnerabilidad dada por expertos a cada uno de los parámetros del modelo (Maldonado et al. 2008), realizando el siguiente procedimiento:
a) Generación aleatoria de los parámetros que intervienen en la determinación de la vulnerabilidad sísmica de las edificaciones de mampostería, los cuales son considerados como los de mayor influencia en la respuesta sísmica de las edificaciones de mampostería. 
b) Cuantificación de la vulnerabilidad a través del índice de vulnerabilidad (Maldonado et al., 2007, UIS-Alcaldía Floridablanca, 2006) el cual relaciona el grado de vulnerabilidad y los valores de importancia de los parámetros; este índice se basa en el método propuesto por Benedetti y Petrini (1984). Los valores de grado de vulnerabilidad y de importancia son definidos a partir de opiniones de expertos. 
c) Determinación del cortante de piso que actúa en cada nivel (FHE), que se utiliza como solicitación lateral del piso en el caso de edificios con flexibilidad despreciable del diafragma. 
d) Cálculo del índice global de daño para cada nivel, ante diferentes solicitudes sísmicas, utilizando el modelo de Abrams (Abrams, 1992). 
e) Relación de los valores del índice de vulnerabilidad con el índice de daño para cada acción sísmica definida.

Las funciones fueron construidas para valores de aceleración de 0.02, 0.05, 0.10, 0.15, 0.20 y 0.25g. En la figura 1 se presentan las funciones para las diferentes acciones sísmicas.
Figura 1. Funciones de vulnerabilidad calculadas (Maldonado et al.2006).
Las funciones corresponden a una polinomial, ver ecuación 1.
 (1)
Siendo, los valores de las constantes a1, a2, a3, y b los presentados en la tabla 1.
Tabla 1. Coeficientes de las funciones ajustadas.
Fuente: elaboración propia
Para la definición del nivel de daño de la edificación, a partir de las funciones o matrices, es necesario estimar un índice de vulnerabilidad el cual se base en la calificación de 11 parámetros (ver figura 2). El concepto de este índice fue introducido por Benedetti y Petrini (1984) en Italia, y posteriormente se ha incorporado en la estimación de la vulnerabilidad en otras ciudades como Barcelona, España (Yépez, 1996 y Mena, 2002), en Cuenca, Ecuador (Jiménez, 2002) y en Mérida, Venezuela (Castillo, 2005).
Fuente: elaboración propia 
(1) Sistema estructural, 
(2) Calidad del sistema resistente, 
(3) Resistencia estructural, 
(4) Posición de la cimentación, 
(5) Suelo y pendiente del terreno, 
(6) Diafragmas horizontales, 
(7) Configuración en planta, 
(8) Configuración en elevación, 
(9) Distancia máxima entre los muros 
(10) Tipo de cubierta, 
(11) Estado de conservación. 
Figura 2. Parámetros en la estimación del índice de vulnerabilidad sísmica.

En la estimación de este índice de vulnerabilidad se requiere realizar el inventario de las edificaciones de mampostería que se desea evaluar. Este inventario se realiza mediante un formulario, el cual contiene las características necesarias para evaluar los once parámetros necesarios para la determinación del índice de vulnerabilidad de la edificación. En lafigura 3 se ilustra parte del formulario que hace referencia a las preguntas correspondientes a los dos primeros parámetros.

sábado, 22 de noviembre de 2014

Maqueta de Planta Geotermia

Maqueta de Planta Geotermica

1 Maqueta. Planta Geotermica

2 Maqueta. Planta Geotermica

3 Maqueta. Planta Geotermica en exhibición

4 Maqueta. Vista corte de volcán

5 Maqueta. Chimeneas con emanación de humo

6 Maqueta. Vista torre de perforación

7 Maqueta. Planta Geotermica

viernes, 14 de noviembre de 2014

Propuesta de normativa para la rehabilitación símica de edificaciones patrimoniales

Con el fin de aportar a la solución del problema sísmico de las edificaciones en tierra, se han realizado investigaciones en las mejores universidades de Colombia sobre las propiedades de los materiales y el comportamiento de los sistemas estructurales en tierra ante fuerzas sísmicas. Estas investigaciones han sido innovadoras y se han apoyado en estudios a nivel internacional. Sin embargo para que estos estudios tengan un real impacto deben incluirse en la norma sismo resistente (NSR-10), la cual actualmente no incluye apartados específicos sobre la manera de rehabilitar sísmicamente las construcciones en tierra. Por esta razón los autores, que han trabajado por más de una década en rehabilitación y restauración de edificaciones en tierra, presentan en este documento un borrador de propuesta de normativa para la rehabilitación de edificaciones en tierra para que sea incluida en las siguientes actualizaciones de la Norma Sismo Resistente de la República de Colombia.
El presente documento es un borrador de una propuesta de normativa que los autores quieren, en un futuro próximo, poner a consideración de la Asociación Colombiana de Ingeniería Sísmica, de la Sociedad Colombiana de Ingenieros y de la Asociación Colombiana de Ingeniería Estructural para ser estudiada, analizada y trabajada como una base de desarrollo que reglamente la rehabilitación sísmica de las construcciones patrimoniales en tierra en Colombia. Asimismo, los autores desean agradecer a la Pontificia Universidad Javeriana y en especial a las Facultades de Arquitectura y Diseño e Ingeniería por el apoyo brindado para la realización de la presente propuesta.


Las construcciones en tierra constituyen una parte fundamental del patrimonio construido de nuestro país. De la mano del adobe y de la tapia pisada se desarrolló la arquitectura urbana y residencial en Colombia durante cuatro siglos. De acuerdo con el listado de la Dirección de Patrimonio del Ministerio de Cultura, se han declarado 1.133 Monumentos Nacionales y 47 Centros Históricos, de los cuales el 80% se encuentra construido en tierra. Dentro de estos Centros Históricos se encuentra La Candelaria en Bogotá, Zipaquirá, Villa de Leyva, Popayán, Barichara, Salento, etc. Dentro de los Monumentos Históricos se puede nombrar la Casa de la Moneda, el Colegio Mayor del Rosario, el Colegio Helvetia, Hacienda Montes (Museo Antonio Nariño), el Convento del Santo Ecce Homo (Boyacá), entre otros.
En la actualidad este patrimonio se ve amenazado y deteriorado por diversos factores medio ambientales, destacándose entre ellos los procesos de deterioro por humedad y los eventos sísmicos. Con respecto a este último es importante mencionar que terremotos dentro del ámbito colombiano, el sismo del eje cafetero del 25 de enero de 1999, el sismo de Popayán de 1983, o el sismo de Cúcuta de 1875 (Figura 1) han ratificado la vulnerabilidad sísmica de las edificaciones en tierra.
Los terremotos pueden derrumbar en unos pocos segundos las edificaciones patrimoniales en tierra que llevan siglos de haber sido construidas. En relación a lo anterior es importante resaltar que el hecho de que algunas edificaciones lleven varios siglos en pie (como algunas del Barrio La Candelaria en Bogotá) no es garantía de que sean sismo resistentes. Prueba de ello es el sismo ocurrido en 1rán a finales de 2003 (magnitud de 6.5 en la escala de Richter), el cual prácticamente destruyó Arg-é-Bam (véanse las fotografías de la Figura 2) que era patrimonio histórico de la humanidad según la UNESCO. Esta fortificación tenía más de 2.500 años de antigüedad y era la mayor construcción de adobe del mundo, colapsó en pocos segundos.
Con el fin de aportar a la solución del problema sísmico de las edificaciones en tierra, se han realizado investigaciones en algunas de las mejores universidades del país en torno al conocimiento de las propiedades de los materiales y del comportamiento de los sistemas estructurales en tierra ante fuerzas sísmicas. Ejemplo de esto son los estudios realizados por los grupos de investigación Estructuras (Departamento de Ingeniería Civil, Facultad de Ingeniería) y GR1ME de la Pontificia Universidad Javeriana (PUJ) en conjunto con el grupo G1MEC1 de la Escuela Colombiana de 1ngeniería (EC1), haciendo ensayos como los que se muestran en la Figura 3. Asimismo el grupo C1MOC de la Universidad de los Andes (Uniandes) ha realizado investigaciones importantes al respecto.

sábado, 8 de noviembre de 2014

Aisladores y disipadores sísmicos

Aislador y disipador sísmico

Estos sistemas se colocan entre la subestructura y la superestructura de edificios, puentes y también en algunos casos, en la misma superestructura de edificios, y permiten mejorar la respuesta sísmica aumentando los periodos y proporcionando amortiguamiento y absorción de energía adicional, reduciendo sus deformaciones según sea el caso.

Sin embargo, desde el punto de vista estructural, ambos sistema trabajan de forma muy diferente. Veamos las diferencias:

Los aisladores sísmicos consiguen desacoplar la estructura del terreno colocándose estratégicamente en partes especificas de la estructura, los cuales, en un evento sísmico, proveen a la estructura la suficiente flexibilidad para diferenciar la mayor cantidad posible el periodo natural de la estructura con el periodo natural del sismo, evitando que se produzca resonancia, lo cual podría provocar daños severos o el colapso de la estructura.

Aislador sismico

Es decir, la idea es separar una estructura de los movimientos del suelo mediante la introducción de elementos flexibles entre la estructura y su cimentación. Los aisladores reducen notablemente la rigidez del sistema estructural, haciendo que el periodo fundamental de la estructura aislada sea mucho mayor que el de la misma estructura con base fija. Como una imagen vale mas que mil palabras, os pongo un vídeo donde se puede ver la diferencia entre una estructura sin aislador y otra con aislador. Video

Los disipadores sísmicos tienen como función disipar las acumulaciones de energía asegurándose que otros elementos de la estructuras no sean sobresolicitados, evitando daños a la estructura. Es decir, los disipadores sísmicos ofrecen un incremento de la amortiguación a la estructura.

Disipador sismico
En el siguiente vídeo podemos ver como se comporta una estructura con y sin disipadores

 

sísmicos: Video

Los japoneses usan estos sistemas en sus edificios con regularidad. En el siguiente vídeo se puede observar como se mueven unos rascacielos de Japón con estos sistemas sísmicos, sin sufrir daños, durante el terremoto de marzo de 2011

viernes, 19 de septiembre de 2014

Las pruebas del equipo del sistema ABC Con Resistencia a Terremoto


PreT-picture_ART_with-copyright
Se le añadió una serie de filamentos pretensados ​​y barras de refuerzo tradicionales a las columnas de hormigón que luego fueron sustentada por tapas de acero. La disposición, que está destinado a ayudar a los puentes soportan fuertes terremotos, está siendo probado en las mesas de agitación de la Universidad de Nevada. © John Stanton
Mesas Shake pondrán a prueba un sistema de doblado prefabricado que se puede construir utilizando la construcción de puentes acelerado (ABC) técnicas y ofrece un mejor rendimiento sísmica.
Un equipo de investigación está completando una serie de pruebas en las grandes mesas de agitación en la Universidad de Nevada que se centra en una versión de una cuarta escala de un nuevo sistema de doblado puente que se puede construir con la ayuda de la construcción de puentes acelerada (ABC) técnicas y también ofrece un mejor comportamiento sísmico. La prueba final se replicará el terremoto de magnitud 6,9 que sacudió Kobe, Japón, en 1995. Dirigido por John Stanton, Ph.D., PE, profesor del departamento de ingeniería civil y ambiental en la Universidad de Washington, el equipo incluye a Marc Eberhard , Ph.D., profesor de la Universidad de Washington, y David Sanders, Ph.D., F.ASCE, profesor de la Universidad de Nevada. Dos asistentes de investigación de posgrado en la Universidad de Washington, Travis Thonstad, SMASCE y Olafur Haraldsson, SMASCE, también son miembros, junto con el Islam Mantawy, asistente de investigación en la Universidad de Nevada. Stanton dice que los métodos tradicionales de ABC que se basan en elementos prefabricados concreto plantea un problema en las zonas sísmicas debido a que las conexiones en el lugar entre vigas y columnas son generalmente más débiles que los propios miembros. "El puente se construye más fácilmente si las piezas prefabricadas individuales son rectas, como vigas y columnas tradicionales, y están conectados en sus intersecciones, pero lamentablemente esas intersecciones son exactamente donde las fuerzas sísmicas llegan a ser lo peor", dice Stanton. "Así que al hacer el puente fácil de construir, entonces usted está haciendo su dolor de cabeza terremoto mucho más grande. Es un verdadero reto, ¿cómo puede usted hacer estas conexiones de trabajo tanto para la factibilidad de construcción y sismo resistencia? Hemos golpeado la cabeza contra las paredes de ladrillo durante mucho tiempo para tratar de trabajar que uno. " Y entonces, dice Stanton, Un día hace varios años tuvo una epifanía mientras se prepara para una conferencia de la ingeniería sísmica. Después de esbozar el concepto, desarrolló dibujos más detallados y buscó las opiniones de sus colegas y contactores, recuerda. Todo indica que el concepto era factible, y las pruebas posteriores han apoyado esto. El equipo realizó pruebas pseudoestática de las inclinaciones que aumentaron progresivamente las fuerzas horizontales. En estas pruebas, el equipo empujó primero la parte superior de las columnas por la deriva aproximadamente el 2 por ciento esperado en un sismo de diseño y luego por la deriva del 3 al 4 por ciento esperado en un terremoto máximo creíble, que tiene un periodo de retorno de 2.500 años.


domingo, 31 de agosto de 2014

Comportamiento Sísmico y requisitos de diseño para edificios de gran altura de hormigón

En los últimos años ha habido un resurgimiento de la construcción de rascacielos en las grandes ciudades a lo largo de la costa oeste de los EE.UU. A diferencia de anteriores auges de gran altura, la mayoría de los altos edificios nuevos y propuestos son para uso residencial o mixto en lugar de para oficinas. Construcción de hormigón es a menudo favorecida, y muchos de los nuevos rascacielos utilizar núcleo de hormigón de la pared de la construcción sin marcos momento suplementarios en el sistema de sísmica de la fuerza-resistencia.
Núcleo de hormigón de la pared de la construcción puede ofrecer ventajas de menores costos, mayor rapidez de construcción y la arquitectura más abierta y flexible. El ahorro de costes y el calendario se dio cuenta, porque las paredes del núcleo edificios resistir las fuerzas sísmicas y deformaciones sin los pórticos que se utilizan en el tradicional de gran altura de la construcción. Al eliminar la necesidad de marcos de momento, los miembros más pequeños de encuadre o losas planas se pueden utilizar para los pisos del edificio, y la profundidad de enmarcar plantas se pueden reducir.
En un edificio de pared central, resistencia a las fuerzas sísmicas es proporcionada por un núcleo de hormigón armado que rodea los ascensores. Las escaleras, los baños y mecánicos / servicio de los usos también pueden localizarse en el núcleo. Para edificios de 300 pies o más de altura, el núcleo de hormigón por lo general tiene una dimensión mínima de 30 pies en cada dirección en planta, con paredes que son de 18 a 30 pulgadas de espesor (Figura 1). Aberturas regulares se utilizan en los muros del núcleo, y las vigas de acoplamiento por encima de las aberturas son reforzados y detallados para disipar la energía del terremoto.

Figura 1: Hormigón núcleo pared del edificio en construcción, el Washington Mutual / Seattle Art Museum, Magnusson Klemencic Asociados, Ingenieros Estructurales.
Código de aceptación de no-prescriptivo Designs
En zonas sísmicas de alto, las disposiciones preceptivas de los códigos de construcción de Estados Unidos no permiten que el núcleo del sistema de pared estructural para edificios de más de 240 pies de altura, sin embargo, en la construcción de las disposiciones del código que permiten los sistemas alternativos de construcción, las autoridades han concedido la aprobación a los edificios de la pared del núcleo de más de 240 pies de altura con el proceso de Peer Review sísmica. (Ver recuadro). El ingeniero de registro es necesario para identificar las excepciones que se están tomando a los requisitos preceptivos, y para demostrar a un revisor experto que el edificio ofrece un rendimiento al menos sísmica equivalente a la que implícita o como resultado de las prescripciones normativas del código de construcción .
La tarea del ingeniero de grabación es mostrar que un edificio cumple con los criterios de realización equivalentes definidas en la Sección 104.11 IBC:
104.11 Los materiales alternativos, el diseño y los métodos de construcción y equipamiento. Las disposiciones del presente Código no están previstas para impedir la instalación de cualquier material o de prohibir cualquier diseño o método de construcción que no esté específicamente previsto en el presente Código, siempre que cualquiera de estas alternativas ha sido aprobada. Un material alternativo, el diseño o método de construcción deberán ser aprobados en el funcionario de la construcción se encuentra que el diseño propuesto es satisfactorio y cumple con la intención de las disposiciones de este Código, y que el material, el método o el trabajo que se ofrece es, para los fines previstos , por lo menos el equivalente de la prescrita en el código en la calidad, resistencia, eficacia, resistencia al fuego, durabilidad y seguridad.
Para los que no prescriptivas diseños sísmicos, el desempeño se evalúa con respecto a la fuerza, la eficacia y seguridad. Diseños sísmicos alternativos o no prescriptivo también son aceptados en el código de construcción por la ASCE 7-05, Sección 12.1.1, párrafo 3:
Sísmicas que resisten la fuerza-los sistemas que no están contenidas en la Tabla 12.2-1 se permitirá si los datos analíticos y de ensayo se sostiene que establecer las características dinámicas y demostrar la fuerza de resistencia lateral y capacidad de disipación de la energía son equivalentes a los sistemas estructurales que figuran en la tabla 12.2 -1 para el coeficiente equivalente de modificación de respuesta, R, sistema de coeficiente de sobrerresistencia, Ωo, y factor de amplificación de la desviación, CD, valores.
Aunque la Tabla 12.2-1 de la ASCE 7-05 enumera una serie de tipos de muro de hormigón sísmicos resistentes al fuerza de los sistemas, ninguna de las reglas de diseño de estos sistemas son tan estrictos como los requisitos de diseño de la capacidad general aplicada al diseño de núcleo paredes de edificios altos. Por lo tanto, sobre la base de comportamiento sísmico esperado, la capacidad de diseño y flexión gobernados edificios con paredes de concreto se puede considerar un tipo distinto de sismo-resistente a fuerzas del sistema. Esta distinción existe actualmente en los códigos de construcción fuera de los EE.UU., y ha sido discutido como un posible cambio de los códigos de construcción próximos de Estados Unidos por el American Concrete Institute y el Nacional de Terremotos Peligros Programa de Reducción.

Figura 2: La acción típica no lineal para una pared en voladizo (izquierda) es una bisagra de flexión de plástico en la base de la pared. Para una pared acoplado (derecha) acciones no lineales son flexión rendimiento vigas de acoplamiento y una bisagra de flexión de plástico en la base de la pared.

viernes, 15 de agosto de 2014

Pruebas de refracción sísmica

Imagen por: Geodatos

Vamos a empezar definiendo lo que son las líneas de refracción sísmica para poder dar una introducción sobre estas líneas.

Estas pruebas se usan para determinar perfiles de velocidades de compresión (llamadas Vp) a lo largo de una línea geofísica y se puede realizar para evaluar espesores de las diferentes partes de un suelo.

Como objetivo principal de estas líneas de refracción sísmica es para adquirir un modelo bidimensional con las diferentes capas del suelo y las velocidades de propagación de las ondas que son transmitidas (P), por lo tanto estás líneas son para deducir la velocidad con que viajan las ondas que vamos a determinar con un aparato, separados los sensores como se explica más adelante.

Actividades a realizar para que podamos identificar el valor de Vp:

  • Tirar líneas de 24 geófonos (recondenado según el terreno o la actividad que se desea investigar), con una separación entre ellos que variará según la profundidad analizada.
  • Tomar los registros de un martillo de 20 kg producidas en el impacto.
  • Copiar los tiempos de llegadas de las ondas Vp (ondas de compresión).
  • Hacer el modelo bidimensional con los datos de las velocidades de ondas de compresión, con los métodos de GRM y Delay Time.
  • Incorporar las variaciones topográficas en las líneas.
  • Aplicar un método iterativo de ajustes para los tiempos medidos y calculados.

Este método sísmico de refracción lo que hace principalmente es crear un impulso elástico que se origina a través de golpes en el suelo ya sea con vibraciones o explosivos.

El conjunto de estos datos consiste principalmente en los registros de tiempos versus la distancia.

¿Para que se utiliza esto en ingeniería civil?

Se utiliza para el estudio del subsuelo para poder determinar las condiciones de meteorización, fracturación y la alteración del mismo, para detección de fallas geológicas.

Aplicaciones:

  • Determinar la profundidad a basamento en los proyectos constructivos como ser represas, hidroeléctricas.
  • Competencia de la roca donde se asentaran las estructuras.
  • Extrapolación lateral de perforaciones puntuales de suelos.
  • Túneles.
  • Estudios geotécnicos.
  • Medida de velocidad de propagación.
  • Canteras y explotaciones mineras.
  • Estratigrafía del sub-suelo.
  • Para determinar la profundidad del sustrato rocoso y morfología.
  • Espesor de capa alterada de las rocas.
  • Clasificar geométricamente las rocas.
  • Encontrar el módulo de deformación estático.
  • Determinar la excavabilidad.
  • Evaluar depósitos de gravas, arcillas, arena, materiales de construcción.

Para poder conseguir estos datos se utilizan instrumentos como son el Zond ST2D, Reflex 2D Tomography y el software que ellos mismos traen para su instalación.

Explicación del uso:

Se disponen de un numero de sensores que miden el tiempo de propagación de la onda elástica en línea recta con unas distancias conocidas, esto a una distancia del otro extremo y en el punto de disparo de la onda con un martillo o algún otro artefacto adecuado, pues producen vibraciones a todo lo largo del terreno y que son detectadas por cada sensor provisto en el terreno y que se irán graficando en un monitor para su posterior estudio.

El equipo consta de los siguientes materiales:

  • Sensores.
  • Unidad de adquisición.
  • Cables de conexión (entre sensores y unidad de conexión).
  • Cable del Trigger (encargado del momento de inicio).

En la siguiente infografía muestro como se determina esta prueba de refracción sísmica y la distribución de los sensores:

Imagen por: IGC

Este método es bastante útil en áreas donde asumimos que hay rocas blandas o depósitos aluviales, o en el peor de los casos suelos blandos, entre los que podemos encontrar grandes variaciones de velocidades de las ondas P y S, pero lo más importante aquí es encontrar la velocidad de propagación de las ondas S para poder determinar las características elásticas del terreno.

Via:Ingeniería Real

Los estratos blandos pueden generar amplificación de ondas sísmicas.