sábado, 6 de julio de 2013

Investigación de respuestas sísmicas críticas incorporando la torsión accidental.

Desde hace bastante tiempo se han reconocido los efectos sísmicos torsionales como una fuente posible de daños de las edificaciones [Ayre, 1938; Ayre, 1943; Housner y Outinen, 1958] y se han emitido recomendaciones para afrontarlos desde 1957 y 1959 en las normas mexicana [Distrito Federal, 1957] y californiana, respectivamente [SEAOC, 1959]. Además, en importantes libros de la época se expuso la metodología de implementación [Blume et al., 1961]. En Venezuela se incorporaron en 1967 en la norma antisísmica, tras el terremoto de Caracas [MOP, 1967]. Sin embargo, pese a la difusión internacional de estas prescripciones, estos dañinos efectos continuaron manifestándose en varios terremotos a lo largo del siglo XX, incluyendo fechas recientes. Por ejemplo, en el terremoto de Guatemala de 1976 (M = 7.5) el Hotel Terminal en la capital falló debido a la torsión generada por el excéntrico núcleo de servicios. En la Figura 1 se observan la fachada y una columna del segundo entrepiso que no resistió la fuerza cortante asociada al momento torsor de la planta superior.

Figura 1. Falla del Hotel Terminal, Ciudad de Guatemala, 1976 [Godden Collection, 1980].
En la Figura 2 se observa el colapso del Hotel New Society en Cotabato City, Mindanao, Filipinas, debido a la torsión global que condujo a la falla de las columnas de una esquina en el primer piso, ocurrido en el terremoto de Mindanao de 1976 (M = 7.9). La fuerte rotación se debió a la gran diferencia de rigidez entre los planos de fachada (observados en la Figura) y los otros dos planos no visibles. En la Figura 3 se observa la fachada de un edificio reciente y el colapso de una columna a nivel del estacionamiento, ocurrido en la ciudad de Kobe durante el terremoto Hyogo-ken-Nanbu, Japón, 1995 (M = 6.9), debido a una combinación de torsión de la planta, entrepiso blando y diseño poco dúctil. Aún más recientemente, en el terremoto de Chi-Chi, Taiwán, 1999 (M = 7.6) podemos encontrar un edificio con falla torsional debida a la poca rigidez de dos planos de fachada (Figura 4), que condujo a su inclinación global.

Figura 2. Colapso del primer piso y giro global del Hotel New Society, Cotabato City, Mindanao, Filipinas, 1976 [Selna y Tso, 1980].

Figura 3. Falla por torsión más otras deficiencias de edificio en Kobe, Japón, 1995 [EERI, 1998].

Figura 4. Falla torsional y consecuente inclinación de edificio en Taiwán, 1999 [Taiwan Collection, 2000].
En Venezuela, en el terremoto de Cariaco, 1997 (M = 6.9), el edificio Miramar (Cumaná) se derrumbó; estaba constituido por pórticos de concreto armado y muros de gran rigidez en los núcleos de escalera y ascensor hacia un extremo de las plantas. Obsérvese el edificio de 8 pisos antes del terremoto en la Figura 5 y un esquema estructural de su Planta Tipo en la Figura 6 [Malaver y Barreiro, 1997]. La ubicación de los muros impuso una gran excentricidad entre los centros de masa y rigidez y ocasionó importantes efectos torsionales, que junto con otras debilidades de la edificación condujeron a su colapso [IMME, 1998]. En la Figura 7 se observa que sólo quedaron en pie dos pisos de los núcleos excéntricos, alrededor de los cuales el edificio giró [EERI, 1997].

Figura 5. Vista del Edificio Miramar, Cumaná, antes del terremoto de 1.997.

Figura 6. Esquema estructural de la Planta Tipo del edificio Miramar, Cumaná, mostrando los muros de los núcleos excéntricos de escalera y ascensor [Malaver y Barreiro, 1997].

Figura 7. Derrumbe del edificio Miramar en el terremoto de Cariaco, 1997. Sólo los dos primeros pisos de los núcleos de escalera y ascensor no colapsaron [EERI, 1997].
De estas experiencias, que no son las únicas, se infiere que aún queda mucho por hacer para la implementación de buenos diseños y que la investigación asociada es importante. Se trata de estimar adecuadamente los requerimientos de los diferentes planos resistentes, de modo que no colapse ninguno, logrando que las distribuciones de masa, rigidez, resistencia y ductilidad en planta, sean lo más balanceadas posibles. En general, se pueden conseguir diseños relativamente seguros sin incrementar excesivamente los costos de construcción [Hernández, 1993].

Resistencia sísmica del suelo-cemento post tensado en construcciones de baja complejidad geométrica


El uso del suelo natural como material de construcción ha sido usado desde tiempos inmemoriales. Las técnicas de construcción con tierra datan hace más de 9000 años. En Turquestán fueron descubiertas viviendas en tierra del período 8000- 6000 a.C. (Pumpelly, 1908). En Asiria fueron encontrados cimientos de tierra apisonada que datan del 5000 a.C. Todas las culturas antiguas utilizaron la tierra no sólo en la construcción de viviendas sino también en fortalezas y obras religiosas (Minke, 2008).
La tierra es el material de construcción con menor huella ecológica y puede manipularse sin una capacitación sofisticada de mano de obra, lo que implica que puede ser aplicada básicamente para la solución de demandas habitacionales.
Sin embargo, a pesar de sus características aislantes, inerciales y resistentes, la tierra presenta limitaciones en su aplicación. Su resistencia mecánica es reducida, vulnerable a la humedad y se erosiona por acción de agentes externos. Con el paso del tiempo ha perdido credibilidad y se ha puesto en tela de juicio sus propiedades mecánicas ante un sismo de gran envergadura. Las construcciones de adobe, a nivel de componentes, presentan problemas estructurales y de estabilidad a consecuencia de la fragilidad en la unión de los bloques y la poca resistencia a los esfuerzos de flexión en el plano del muro. Un claro ejemplo de esto se pudo ver el pasado 27 de Febrero de 2010 con las innumerables construcciones de adobe de la VI y VII Región dañados por el terremoto 8,8 Richter.
En Chile la consecuencia más importante es la exclusión del adobe como sistema constructivo por la Ordenanza. Lo anterior ha llevado a que el adobe tenga un uso limitado en construcciones. Tal como lo menciona Gaete (2010), “la ausencia de criterios o normativas nacionales que regulen las construcciones que consideren la tierra como material predominante y/o estructural limita su uso” (p.1).
En la actualidad se observan cambios constructivos importantes en la arquitectura en tierra. En cuanto al material original, la tierra cruda, ha tenido cambios que alteraron sus propiedades y sus posibilidades tanto materiales como tecnológicas. Mediante la estabilización con productos naturales o industriales, y la compactación, se alteraron aspectos tales como la durabilidad, las resistencias, las terminaciones y los modos constructivos.

Implicaciones del tsunami de Tohoku del año 2011 para la gestión de desastres naturales en Japón

 

El 11 de marzo del año 2011 un terremoto de magnitud 9.0 en la escala Richter tuvo lugar en el mar próximo a lacosta noreste de Japón, generando un tsunami que causó graves daños en las zonas costeras. Un gran número de edificios, incluso muchos de ellos construidos en hormigón armado, fueron destruidos o sufrieron daños extensos, y una gran parte de la flota pesquera terminó encallada en tierra. Muchas estructuras de defensa costera como diques, rompeolas u otras estructuras construidas para resistir tsunamis, también sufrieron graves daños. Ha sido uno de los peores tsunamis que ha afectado Japón a lo largo de su historia. De hecho, el así llamado Gran Terremoto y Tsunami del Este está considerado como un evento que se produce solo cada varios miles de años, al igual que el tsunami de Jogan del año 869 d.C. (Sawai etal., 2006). Esta zona de Japón, conocida con el nombre de Tohoku, ha sido frecuentemente atacada por tsunamis, como el Tsunami de Keicho en el año 1611, donde las olas llegaron hasta 4 km tierra adentro, causando grandes daños en la región (Sawai et al., 2006), o los tsunamis de Meiji-Sanriku de 1896 y Showa-Sanriku de 1933.
Como consecuencia de este tsunami se hace necesario revisar la filosofía detrás de la Gestión de Desastres Naturales en Japón. El desastre ha proporcionado muchas lecciones de cómo se podrían mejorar muchos aspectos de esta gestión, y estas lecciones afectarán las consideraciones teóricas, morales y éticas de dicha gestión. En este artículo los autores describen las principales características del evento y sus implicancias.
Mucho de lo que será discutido tiene su base en problemas intrínsecos a la actual manera de gestionar desastres naturales. Durante muchos años se ha debatido entre los Ingenieros de Costas japoneses y la comunidad que gestiona los desastres naturales si los métodos físicos de protección basados sólo en infraestructura, como los rompeolas o diques, son preferibles a los métodos de planificación como los sistemas de alerta o planes de evacuación. La magnitud del evento de marzo del 2011 ha intensificado el debate, y de hecho en Japón se está comenzando a llegar a un consenso a este respecto. La idea de que las estructuras de protección son siempre capaces de proteger la vida de los habitantes de la costa ha sido abandonada, especialmente a la luz de este último evento. La función de estas estructuras es por tanto dar protección a las propiedades durante los eventos de mayor frecuencia, pero de una intensidad menor, típicamente con un periodo de retorno de entre 50 a 60 años y entre 150 a160 años (intervalos de frecuencia usados en Japón). Estos eventos comienzan a ser referidos como "Tsunamis de Nivel 2". El objetivo de los métodos de planificación sería la protección de vidas, y estaría diseñado teniendo en mente los eventos más infrecuentes pero de mayor intensidad que comienzan a ser definidos como "Tsunamis de Nivel 1". El costo financiero de construir estructuras para proteger contra tsunamis es bastante elevado, y su efectividad no está del todo clara, sobre todo para eventos superiores al tsunami de diseño, como sucedió en marzo del 2011.
En el futuro la construcción de infraestructura sólo debería proceder si se establece que tienen sentido desde un punto de vista de costo-beneficio, especialmente considerando que sólo se espera que protejan las propiedades de las zonas costeras. Hoy en día no está claro hasta qué punto los métodos físicos contribuyeron a aliviar el daño causado por el tsunami, especialmente dado el extenso (a veces catastrófico) daño que sufrieron estas estructuras. Un análisis preliminar de la altura de ola en frente y detrás del rompeolas situado en la bahía de Kamaishi muestra como la estructura podría haber contribuido a reducir la altura de inundación entre un 40 y 50% (utilizando datos del Tohoku Earthquake Tsunami Joint Survey Group (2011) y de PARI (2011)), aunque realmente es necesario investigar este fenómeno mucho más a fondo.
Una parte de esta discusión sobre los métodos de planificación y de infraestructura se centra en si las áreas costeras pueden ser consideradas como lugares de recreo o como el origen de posibles amenazas. ¿Se debería preservar la belleza de estas áreas, o protegerlas de potenciales ataques provenientes del mar?. Japón es un país que periódicamente experimenta desastres naturales como terremotos, tsunamis y tifones, entre otros. Para protegerse contra tifones y tsunamis es necesario no solo construir defensas costeras sino que también es necesario la adecuación de ríos y laderas de montañas para proteger contra otras consecuencias de estos desastres, como inundaciones y remociones en masa. Por lo tanto, las consideraciones estéticas y de ingeniería pertinentes al caso de Japón no son necesariamente las mismas de otros países. Esto se refleja también en la mentalidad de la población e Ingenieros Civiles japoneses, que asocian la idea de problemas costeros con amenazas y como protegerse de ellas. Por ejemplo, la costa de Sanriku tiene una economía que depende de la pesca y otras industrias asociadas con esta actividad. Para la población que vive en estas áreas las consideraciones estéticas son seguramente secundarias comparado con la protección de vidas y de su estilo de vida. Por esto la implementación de métodos de defensa físicos es esencial para que la zona continúe siendo habitada y que la población viva en relativa paz con el mar. Este sentimiento en Japón es en general bastante diferente al de otros países de Europa o América del Norte, donde la implementación de estructuras de defensa sería difícil debido a la oposición de la población del lugar, que protestaría sobre el impacto de las estructuras sobre el ambiente.
El Gran Terremoto y Tsunami del Este del 2011 sin duda conllevará a profundas reflexiones sobre los conceptos y formas de gestión de riesgos referentes a tsunamis en Japón y en el mundo. La gran cantidad de daños y el elevado número de víctimas en un país que se consideraba bien preparado para los tsunamis sin duda creará grandes debates entre Ingenieros Costeros, las personas y organismos que gestionan zonas costeras y los gobiernos nacionales y locales. A pesar de las trágicas consecuencias de eventos como éste, es importante comprender que también presentan oportunidades para impulsar cambios en la utilización y protección de la costa e incrementar la capacidad de defensa de las comunidades contra futuros eventos. En este caso es difícil llegar a la conclusión de que los errores del pasado están siendo repetidos, debido a que este evento tiene un periodo de retorno tan alto que lo hace relativamente único en la historia de Japón hasta este momento. A pesar de esto, este tipo de eventos serán a partir de ahora una parte constituyente de la historia de la humanidad, y pueden servir de ejemplos para otras regiones de Japón o del mundo.

Herramienta numérica de análisis para losas de hormigón armado sometidas a aceleraciones verticales sísmicas

Debido a la magnitud momento de 8.8 del terremoto que sacudió la zona centro sur de Chile el 27 de febrero del año 2010, muchas estructuras de hormigón armado sufrieron deformaciones que sobrepasaron el límite elástico de varios de sus elementos estructurales. Deformaciones irreversibles se evidenciaron por medio de la aparición de fisuras, grietas e incluso desprendimiento del hormigón y falla del acero de refuerzo. Esto condujo a la falla de importantes elementos estructurales e incluso el colapso de algunas estructuras (Betanzo 2010). En general las fallas más importantes suceden en muros, vigas y columnas de hormigón armado, en cambio en las losas los daños son menores. Tal vez debido a esto las losas de hormigón armado son menos estudiadas. Sin embargo, las fotos de la Figura 1 muestran ejemplos de daños en losas ocurridas en el terremoto del 27/02/2010. Por lo tanto, también se hace necesario estudiar el comportamiento sísmico de las losas y en particular el efecto de la componente vertical del movimiento, el cual es aún menos estudiado.


El terremoto del 27/02/2010 se caracterizó por presentar altas aceleraciones verticales, alcanzando en algunos registros valores muy similares a las aceleraciones horizontales (Barrientos 2010; Boroschek et al. 2010). Sin embargo, la componente vertical de la aceleración es raramente considerada en el diseño sismorresistente de edificios y menos aún en el diseño sismorresistente de losas de hormigón armado.
Estos valores significativos de aceleración vertical merecen un estudio especial respecto a la respuesta que puedan originar en las superestructuras. Uno de los objetivos de este trabajo apunta a poder contribuir a las recomendaciones dadas por los códigos de diseño sismorresistentes respecto a la componente vertical del terremoto de diseño. Por ejemplo, la norma Chilena NCh 433Of96, la cual rige el diseño sismorresistente de edificios, no considera la componente vertical del terremoto de diseño, ya que solo se indica que las solicitaciones sísmicas relevantes provienen de aceleraciones horizontales.
Ecuación diferencial de placas
La expresión que permite estimar la deformación vertical de una placa y que puede ser usada para calcular la flecha de una losa de hormigón a partir de las propiedades geométricas y resistentes de este material y las cargas aplicadas viene dada por (Timoshenko, 1937; Chakraverty 2009):

La expresión (1) es una ecuación diferencial de cuarto orden que relaciona la flecha w con la carga repartida q y las propiedades del material. Donde w es el desplazamiento vertical o flecha, es la masa por unidad de superficie y q es la carga distribuida sobre la losa. El parámetro representa la rigidez flexural de la placa y su expresión está dada por:

donde E es el módulo de Young o de elasticidad del material, ν es la relación de Poisson y t es el espesor de la losa.
Discretizacion de la losa por medio del MEF
Para resolver (1) se ha utilizado el Método de los Elementos Finitos MEF. Para ello se han escogido dos elementos en particular: el elemento rectangular MZC (Melosh 1963, Zienkievicz y Cheung 1967) y el elemento triangular DKT (Discrete Kirchhoff Triangular, ver Batoz et al. 1980). La diferencia que existe entre estos dos elementos, es que el elemento triangular proporciona más versatilidad geométrica que el elemento rectangular, por ejemplo se pueden realizar mallados con geometrías de losas circulares.
Al discretizar la losa y al aplicar el MEF sobre (1), se obtienen matrices de rigidez y masa, tanto para el elemento MZC como para el elemento DKT. Una vez que han sido calculadas las matrices de rigidez y masa tanto para el elemento MZC como para el elemento DKT, la ecuación que permite encontrar los desplazamientos de la losa es,

La expresión (3) es una ecuación de movimiento para sistemas de múltiples grados de libertad. Esta ecuación matricial de movimiento posee la característica de involucrar las matrices de masa [M], amortiguación [C] y rigidez [K] de la losa. Cabe destacar que los coeficientes que componen la matriz de amortiguación no pueden ser obtenidos explícitamente, debido a esto se incorporan en las ecuaciones de movimiento solo a nivel modal (Paz 1992). También se debe mencionar que (3) es un sistema de ecuaciones acophdo, por lo que para resolverlo se hace necesario desacoplarloa través del Método de Superposición Monal (Paz 1992). Al aplicar el Método de Superposición Modal sobre (3) se obtiene la siguiente ecuación modal de movimiento,


Análisis estructural, sísmico y geotécnico de la iglesia de Sant' Agostino en L'aquila (Italia)

El caso propuesto constituye la síntesis de análisis estructural y sísmico de la iglesia de Sant' Agostino en L'Aquila, gravemente dañada por una serie de sismos ocurridos en abril de 2009, realizada mediante una profunda comprensión tanto histórica como científica de la edificación.
La construcción de Ia iglesia data de comienzos del 1700. En Ia actualidad, Ia iglesia persiste, al menos parcialmente, en el emplazamiento de otra iglesia fundada en 1282 y dedicada a San Agustín (Cacciamali et al.,2010). La iglesia original fue seriamente dañada por diversos sismos, quedando destruida por un sismo ocurrido el año 1703. El proyecto de Ia actual iglesia pertenece al arquitecto Giovan Battista Contini y data de fines de 1708 y terminándose, probablemente, hacia 1725 (Cacciamali etal., 2010; Gavini I. C, 1926).
En su fase medieval, Ia iglesia tenía una planta en forma de cruz latina, con tres naves y crucero, ábside al fondo y Ia fachada principal orientada hacia el oeste, hacia las calles adyacentes en lugar de mirar hacia Ia plaza. Fue Ia iglesia de las tres órdenes mendicantes que residían en L'Aquila: los Agustinos, después de los Franciscanos y Dominicanos (Figura 1).

Figura 1. La iglesia medieval
En la iconografía de Ia ciudad de 1622 y 1680, la presencia de Ia fachada retranqueada de coronamiento recto, que caracterizaba a la iglesia original, apoya la teoría de la persistencia de su implante medieval (modificado posiblemente en 1656 con la introducción de la apertura principal hacia la plaza) hasta su colapso debido al sismo de 1703, cuando Contini trazó una nueva arquitectura, cubierta por una cúpula y abierta hacia la plaza pública (Cacciamali et al., 2010; Antonini, 2004; Antonini 1999; Chiodi, 1988).

Figura 2. Iconografía de la iglesia después de abrir la puerta principal hacia la plaza

2. Descripción de la iglesia
La iglesia posee un plano longitudinal, la entrada se abre hacia un pequeño atrio cubierto por un techo inclinado, seguido por una nave de forma elíptica, coronada por una cúpula y por un largo ábside, cubierto por una bóveda cilíndrica. A ambos lados de la nave, tiene tres pares de capillas: las capillas mayores están ubicadas en el eje ortogonal principal, mientras que las capillas menores se ubican en los ejes diagonales. En el exterior un sistema de machones. El domo que se levanta sobre la nave tiene un largo máximo de veinte metros, se encuentra reforzado con cuadernas y coronado por una linterna.

Figura 3. Planta de la iglesia de Sant' Agostino
La fachada está dividida en dos partes, estructurada en una parte inferior y una superior. La parte inferior corresponde al cabezal del atrio; la parte superior está retranqueada unos siete metros aproximadamente y forma una de las caras del prisma octagonal de la linterna. La articulación escultórica de la fachada es simple y esencial, realzada por un medallón circular en alto relieve que representa a San Agustín. Un tímpano trapezoidal rematado en una balaustrada, enmascara el techo a dos aguas que corona la entrada y unifica las dos secciones de la fachada (Cacciamali et al., 2010; Ceravolo R., 2010; Calderini y Lagomarsino S., 2009).

Figura 4. Iglesia de Sant' Agostino antes y después del sismo ocurrido en abril de 2009
La iglesia está construida en albañilería. En el análisis visual, se observa que todas las superficies abovedadas, los arcos y las vigas (visibles por la caída del yeso) son de albañilería de ladrillo de excelente calidad. En cambio, todas las estructuras verticales son de albañilería mixta piedra/ladrillo de mediana calidad, con esquinales bien conectados en piedras cuadradas. Los machones son de piedra cuadrada de excelente calidad (Fiengo y Guerriero 2008). En algunos casos, sobre los dinteles de las aberturas externas, se reconocen elementos de refuerzos en madera. En el interior del edificio, no se aprecian cadenas metálicas a la vista. Sin embargo, algunos cabezales de cadenas metálicas, que señalan su presencia, son visibles en los muros exteriores. El diagrama de la Figura 5muestra una distribución hipotética de las cadenas dentro de la estructura (Ceravolo, 2010; Calderini y Lagomarsino, 2009). Cabe señalar que los cabezales de las cadenas son sólo visibles en el muro externo libre que da hacia la Via Sant' Agostino y no en el que enfrenta la Prefectura.

Figura 5. Distribución hipotética de las cadenas en la estructura. (Calderini y Lagomarsino, 2009)

Daño no Estructural en un Sismo

El daño sísmico no estructural es el que sufren los elementos no estructurales (paredes livianas, vidrios, muebles, lámparas, etc.) por el efecto de un sismo. Es el deterioro físico de los componentes que no forman parte integral del sistema resistente o estructura de la edificación y que pueden ser arquitectónicos y electromecánicos, que cumplen funciones importantes dentro de las instalaciones, pero que igualmente se pueden ver afectados.
Los componentes no estructurales pueden incidir o propiciar la ocurrencia de fallas estructurales o pueden modificar la respuesta de movimiento esperada según el diseño. Por ejemplo, si se adicionan  escaleras, bloques o revestimientos pesados, se pueden introducir excentricidades y otros efectos de movimientos no deseados en el edificio.
Existen tres grandes efectos primarios de los elementos no estructurales en edificios:
1. Efectos inerciales.


Cuando un edificio es movido durante un sismo, la base del mismo se desplaza de la misma forma que el terreno, pero el resto del edificio y su contenido sobre la base experimentarán fuerzas inerciales, de oposición al movimiento. Es decir, mientras que la estructura se mueve hacia un lado, todo lo que son muebles, lámparas, estantes, etc., van a oponerse a ese movimiento.
El principio básico de las fuerzas inerciales sísmicas es la segunda Ley de Newton donde la fuerza es igual a la masa por la aceleración. Estas son mayores si la masa es mayor o si la aceleración o la severidad del movimiento es mayor.  
Consecuentemente, los elementos no estructurales que pueden ser dañados o causar daño por las fuerzas inerciales son, entre otros: archivadores, equipo generador de energía, estantes de libros sin adosar o muebles.  Por ejemplo, en la siguiente figura se pude ver la caída de objetos dentro de una casa que se encontraba sobre la falla que originó el terremtoo de Kobe, Japón, en 1995.  La casa se mantuvo en pie, a pesar de que la falla pasaba a unos metros cerca de esta. Sin embargo, observen la forma en que quedó el interior de la cocina.

Figura 1. Traza de la falla cerca de una vivienda en la isla Awaji durante el terremoto de Kobe de 1995. Como puede verse, la estructura se mantuvo en pie a pesar de la cercanía de la falla que si causó daños en la ciudad. (Más información en http://home.hiroshima-u.ac.jp/kojiok/nojimaeq.htm). A la derecha se ve el daño causado dentro de la cocina de la misma casa producto de objetos sueltos. (Foto de Internet)
Cuando elementos sin sujeción (o sueltos, como en la figura anterior) son movidos por un terremoto, las fuerzas inerciales pueden causar deslizamiento, oscilaciones y golpes con otros objetos o volcamiento, obstaculizándose el paso para el desalojo del edificio. Este es quizás el principal problema de estos elementos, que pueden llegar a bloquear las salidas de emergencia.
Un error común es pensar que los objetos grandes y pesados son estables y no tan vulnerables a los daños por sismos fuertes como los objetos livianos. De hecho, muchos tipos de objetos pueden ser vulnerables al daño por sismo causado por fuerzas inerciales, debido a que estas son proporcionales a la masa o peso de un objeto.
pub26fig1.jpg

domingo, 30 de junio de 2013

Dispositivos de disipación de energía para Sismorresistente Diseño Edificio

Otro enfoque para el control de daños sísmicos en los edificios y la mejora de su comportamiento sísmico es mediante la instalación de amortiguadores sísmicos en el lugar de los elementos estructurales, tales como tirantes diagonales. Estos actúan como amortiguadores de los amortiguadores hidráulicos en los coches - gran parte de los tirones bruscos son absorbidos en los fluidos hidráulicos y sólo poco se transmite arriba para el chasis del coche. Cuando la energía sísmica se transmite a través de ellos, amortiguadores absorben parte de ella, y por lo tanto amortiguan el movimiento del edificio.
Energy Dissipation Devices
Dispositivos de disipación de energía
Amortiguadores sísmicos utilizados comúnmente
  1. Amortiguadores viscosos (energía es absorbida por base de silicona fluido que pasa entre la disposición de cilindro de pistón),
  2. Amortiguadores de fricción (la energía es absorbida por las superficies de fricción entre ellos rocen entre sí),
  3. Amortiguadores de rendimiento (energía es absorbida por los componentes metálicos que rendimiento).
  4. Los amortiguadores viscoelásticos (energía es absorbida por la utilización de la cizalladura controlada de sólidos).
Así, mediante el equipamiento de un edificio con dispositivos adicionales que tienen alta capacidad de amortiguación, podemos reducir en gran medida la energía sísmica que entra en el edificio.
¿Cómo funciona?
How Dampers Work
Cómo amortiguadores funcionan
La construcción de un amortiguador de fluido se muestra en la (fig). Se compone de un pistón de acero inoxidable con cabeza orificio de bronce. Está lleno de aceite de silicona. La cabeza del pistón utiliza pasajes de forma especial que alteran el flujo del fluido amortiguador y por lo tanto alteran las características de resistencia de la compuerta. Amortiguadores de fluido pueden ser diseñados para comportarse como un disipador de energía pura o un resorte o como una combinación de los dos.
Un amortiguador viscoso fluido se asemeja el amortiguador común, tales como las que se encuentran en los automóviles. El pistón transmite la energía que entra en el sistema para el fluido en el regulador de tiro, haciendo que se mueva dentro del amortiguador. El movimiento del fluido dentro del fluido amortiguador absorbe esta energía cinética mediante la conversión en calor. En los automóviles, esto significa que un choque recibida en la rueda se amortigua antes de que alcance el compartimiento de pasajeros. En los edificios que esto puede significar que las columnas del edificio protegidos por amortiguadores sufrirán mucho menos movimiento horizontal y daños durante un terremoto.
Fluid Viscous Dampers
Amortiguadores viscosos fluidos

domingo, 9 de junio de 2013

Licuación de Suelos


La foto muestra una impresionante falla de suelo ocurrida durante el terremoto de Niigata, donde edificios quedaron completamente inclinados y sin experimentar severos daños estructurales.
Existen dos fenómenos que se asocian con el término licuación y se relacionan con un aumento considerable de presiones de poros: Licuación Verdadera y Movilidad Cíclica.
Licuación Verdadera o Falla de Flujo:
Se refiere a una repentina pérdida de resistencia y en el que la masa de suelos fluye asemejándose a un fluido viscoso. El agente gatillante de esta falla puede o no ser de tipo dinámica.
Un ejemplo es lo sucedido con la Presa de San Fernando, en 1971, cuya falla se estima habría comenzado un minuto y medio después de ocurrido el sismo.

Falla en Presa San Fernando
Otro caso corresponde a la Mina de Oro Japonesa Mochikoshi, que experimentó la falla de uno de sus diques 24 horas después de ocurrido el sismo en el año 1978 (no es necesaria la acción permanente de la perturbación).
Movilidad Cíclica o Licuación
Corresponde a la disminución de la rigidez asociada al incremento de presión de poros durante una solicitación cíclica, y que conlleva a un aumento considerable de las deformaciones.
Uno de los pocos registros en vídeo que existían hasta hace un tiempo es la grabación durante el terremoto de Niigata, Japón (1964).

lunes, 27 de mayo de 2013

Daños estructurales en construcciones patrimoniales de la Iglesia Católica en la Arquidiócesis de Concepción producto del sismo del 27 de febrero 2010

Introducción
Este artículo presenta las inspecciones estructurales realizadas a varias construcciones como la Catedral de Concepción e iglesias y capillas pertenecientes al Arzobispado de Concepción. Este trabajo fue encomendado por las autoridades de la Universidad Católica de la Santísima Concepción, el Rector Dr. Juan Cancino y el Gran Canciller Monseñor Ricardo Ezzati, a través de la Vicerrectoría de Asuntos Económicos y Administrativos. La duración de los trabajos fue de alrededor de 3 meses. Si bien se inspeccionaron 34 iglesias y otras estructuras, sólo se presentan análisis de las más importantes y simbólicas.
Se entregan algunos aspectos generales del sismo del 27/02/2010 y una comparación con otros eventos ocurridos en tiempos pasados. Además se presenta una descripción de las estructuras resistentes, los daños observados y se realiza un análisis de las causas de dichos daños. Esta información fue parte de los informes estructurales utilizados para su reparación. Las estructuras inspeccionadas corresponden a la Catedral de Concepción, El Sagrario y la Iglesia La Pompeya, todas ubicadas en el centro de Concepción. Además, se inspeccionó el Templo Parroquial Jesús Obrero, ubicado en el sector Schwager de Coronel y el Santuario de Yumbel. La Figura 1 muestra la ubicación geográfica de las estructuras inspeccionadas de Yumbel y Schwager respecto a Concepción.


A pesar de que se han publicado trabajos sobre los efectos del terremoto del 27 de febrero 2010, estos han sido principalmente sobre daños en edificios habitacionales y en estructuras industriales (GEER 2010, Betanzo, 2010). Es por ello que este trabajo aporta en la investigación de estructuras de iglesias, las cuales son en general más antiguas y por lo tanto ya han sufrido antes grandes terremotos.
Aspectos generales del sismo
El sismo del 27 de febrero del año 2010, de magnitud momento 8.8, tuvo su epicentro en las costas de Cobquecura, región del Bío Bío. Para mayor información sobre este terremoto revisar Barrientos (2010) y Quezadaet al. (2010). La Figura 2 muestra la localización del epicentro, el cual se ubicó a 100 km al norte de la ciudad de Concepción, lo que explica la gran intensidad del sismo en esta zona.



miércoles, 22 de mayo de 2013

Estudio Comparativo Económico de Edificios con Aislamiento Sísmico en la Base

En los últimos años la ingeniería sísmica en todo el mundo ha enfocado muchos de sus esfuerzos a investigar e implementar métodos para mitigar la amenaza de las comunidades más vulnerables. Entre estos, los sistemas pasivos de disipación de energía para el diseño y reforzamiento de estructuras han tomado gran auge, gracias a la ayuda de los procesadores electrónicos y la dinámica estructural hoy en día existen numerosos ejemplos de estructuras construidas o reforzadas en algunos de los países del mundo más propensos a la amenaza sísmica.
La disipación pasiva de energía es una tecnología que mejora el desempeño de una edificación añadiendo amortiguación a su estructura, siendo el uso primario de los disipadores de energía la reducción de los desplazamientos sísmicos de la estructura.
Los disipadores de energía reducen, igualmente, la fuerza en la estructura, proporcionándole a su vez una respuesta elástica, en algunos casos, sin que deba esperarse la reducción de la fuerza en estructuras que estén respondiendo más allá de la fluencia.




  • OBJETIVOS
  • Presentar un resumen comparativo del estado del arte en sistemas de protección sísmica.
  • Mostrar el comportamiento sísmico de los aisladores de base.
  • Realizar un estudio comparativo económico de un edifico con aisladores y un edificio fijo.
  • INTRODUCCIÓN
En muchos casos la disipación de energía se ha constituido en una alternativa para los esquemas convencionales de rigidización y reforzamiento y se debe esperar que alcancen un nivel de desempeño comparable. En general, estos dispositivos pueden ser una buena opción a considerar en los casos en los cuales se espera un buen nivel de desempeño en cuanto a la protección de la vida de las personas o, quizás, respecto de la ocupación inmediata, pero con aplicabilidad limitada en proyectos con un nivel de desempeño de prevención de colapso.
Los sistemas de protección sísmica empleados en la actualidad comprenden desde relativamente simples dispositivos de control pasivo hasta avanzados sistemas completamente activos. Los sistemas pasivos son tal vez los más conocidos e incluyen los sistemas de aislamiento sísmico y los sistemas mecánicos de disipación de energía. El aislamiento sísmico es el sistema más desarrollado de la familia, con continuos avances en dispositivos, aplicaciones y especificaciones de diseño. Los sistemas de protección sísmica pueden ser clasificados en cuatro categorías: sistemas pasivos, activos, híbridos y semi-activos.
Las primeras aplicaciones de los aisladores de base actuales fueron en puentes debido a que estas estructuras normalmente se apoyan sobre placas de neopreno para permitir el libre desplazamiento ocasionado por los cambios de temperatura. Esto permitió la sustitución de las placas de neopreno por aisladores de base. El primer intento moderno por utilizar un sistema de aislamiento en edificaciones se dio en la Escuela Heinrich Pestalozzi, en Skopje, Yugoslavia, en 1969, mediante un método suizo denominado “Aislamiento total de la base en tres direcciones” utilizando vigas de caucho natural sin reforzar. A partir de este edifico empezó la experimentación, implementación y patentado de sistemas en los Estados Unidos, Japón y Nueva Zelanda principalmente.
  • SISTEMAS DE PROTECCIÓN SÍSMICA
'Estudio comparativo de edificios con aislamiento sísmico en la base'
  • Sistemas Pasivos
    Los sistemas de control pasivo emplean dispositivos bastante simples que reducen la respuesta dinámica por medios totalmente mecánicos. Los sistemas pasivos más comunes son los aisladores sísmicos, los disipadores de energía y los osciladores resonantes (TMD). Cada sistema emplea diferentes enfoques para el control de la respuesta estructural y son más efectivos para diferentes tipos de estructuras
    4.1.1 Aisladores Sísmicos
    El aislamiento sísmico es una estrategia de diseño basada en la premisa de que es posible separar una estructura de los movimientos del suelo mediante la introducción de elementos flexibles entre la estructura y su fundación. Los aisladores reducen notablemente la rigidez del sistema estructural, haciendo que el periodo fundamental de la estructura aislada sea mucho mayor que el de la misma estructura con base fija. Existen básicamente dos tipos de sistemas de aislamiento: los apoyos elastoméricos y los apoyos deslizantes. Los apoyos elastoméricos emplean un elastómero de caucho natural o neopreno reforzado con finas láminas de acero. La notable flexibilidad lateral en el elastómero permite el desplazamiento lateral de los extremos del aislador, mientras que las láminas de refuerzo evitan el abultamiento del elastómero y le proporcionan una gran rigidez vertical. Existen tres tipos de apoyos elastoméricos ampliamente usados: apoyos de caucho natural (NRB), apoyos de caucho con núcleo de plomo (LRB), y apoyos de caucho de alta disipación de energía (HDR). Los apoyos deslizantes poseen una superficie de deslizamiento que permite la disipación de energía por medio de las fuerzas de rozamiento. Uno de los dispositivos más innovadores es el sistema pendular friccionante que combina la acción del deslizamiento con la generación de una fuerza restitutiva debido a la geometría del deslizador.
    'Estudio comparativo de edificios con aislamiento sísmico en la base'Apoyo elastomérico
    El aislamiento sísmico es un sistema ampliamente usado para la protección sísmica de diversos tipos de estructuras. Numerosos estudios teóricos, análisis numéricos y ensayos de laboratorio demuestran el excelente comportamiento que puede lograr este sistema en la protección de estructuras sometidas a eventos sísmicos moderados y severos. Adicionalmente, la efectividad de este sistema fue evidenciada por los registros de la respuesta dinámica de los edificios con aislamiento de base sacudidos por los sismos de Northridge en 1994 y Kobe en 1995.
    Actualmente existen numerosas aplicaciones de sistemas de aislamiento de base en países como Japón, Estados Unidos, Nueva Zelanda e Italia. Estas aplicaciones corresponden principalmente a la construcción de nuevos edificios y el mejoramiento sísmico de estructuras existentes. Uno de los edificios en los que se demostró la factibilidad de los sistemas de aislamiento sísmico es el Fire Command and Control Facility en Los Angeles. Este edificio es una central de emergencias que debe permanecer en operación incluso después de un sismo extremo. Para su construcción se realizó una comparación entre los esquemas de diseño convencional y de aislamiento sísmico para proveer el mismo grado de protección. En estos términos se estimó que el costo del edificio con aislamiento sísmico era un 6% menor que el correspondiente al edificio con un diseño convencional.
    La prueba más severa a la que fue sometido un edificio con aislamiento sísmico hasta la fecha corresponde al hospital de docencia de la Universidad de Southern California. El edificio está ubicado a 36 km del epicentro del terremoto de Northridge, ocurrido en 1994 con una magnitud de 6.8 MW. Durante el terremoto el terreno bajo el edificio alcanzó una aceleración máxima de 0.49 g, mientras que las aceleraciones en el interior del edificio estuvieron entre 0.10 g y 0.13 g. Esto significa que la estructura fue aislada en forma efectiva de los movimientos del suelo, teniendo en cuenta que estos movimientos fueron lo suficientemente intensos como para provocar daños importantes en edificios adyacentes.
    A diferencia de las técnicas convencionales de reforzamiento de edificios existentes, con el aislamiento sísmico se busca reducir la demanda a niveles en los que la capacidad existente en la estructura sea suficiente para resistir las cargas. Esta técnica es particularmente apropiada para la protección de edificios con valor histórico.
    4.1.2 Disipadores de Energía
    Los disipadores de energía son dispositivos diseñados para absorber la mayoría de la energía sísmica, evitando así que ésta sea disipada mediante deformaciones inelásticas en los elementos estructurales. Pueden ser clasificados como histeréticos o viscoelásticos.
    Los disipadores histeréticos incluyen los disipadores metálicos y los disipadores friccionantes, y dependen esencialmente de los desplazamientos de la estructura. Los disipadores metálicos están basados en la fluencia de los metales debido a flexión, corte, torsión, o extrusión. Uno de los dispositivos metálicos más reconocidos es el ADAS, que está compuesto por placas de acero con sección transversal en forma de X instaladas en paralelo sobre los arriostres. Los disipadores friccionantes son dispositivos que disipan la energía mediante las fuerzas de fricción que se presentan por el desplazamiento relativo entre dos placas en contacto. Son diseñados para deslizar a una carga predeterminada, y permanecen inactivos mientras no existe una demanda sísmica importante sobre el edificio.
    Disipador histerético
    'Estudio comparativo de edificios con aislamiento sísmico en la base'
    Los disipadores viscoelásticos incluyen los sistemas de sólidos viscoelásticos, fluidos viscoelásticos, y los disipadores fluido-viscosos. Los dispositivos viscoelásticos dependen esencialmente de la velocidad. Los disipadores viscoelásticos sólidos están constituidos por una capa de material viscoelástico ubicada entre dos placas de acero, usualmente acopladas a los arriostres que conectan los extremos del entrepiso. Los dispositivos viscoelásticos líquidos disipan la energía por medio de las deformaciones inducidas por un pistón en una sustancia altamente viscosa. Los disipadores fluido-viscosos son dispositivos que disipan energía forzando el flujo de un fluido a través de un orificio. Estos dispositivos son similares a los amortiguadores de un automóvil, pero operan con un mayor nivel de fuerzas y son fabricados con materiales más durables para lograr un mayor tiempo de vida útil.
    Disipador viscoelástico
    'Estudio comparativo de edificios con aislamiento sísmico en la base'
    4.1.3 Osciladores Resonantes
    Un oscilador resonante (TMD) es un sistema de un grado de libertad constituido por una masa, un elemento restitutivo y un mecanismo de disipación de energía, usualmente montado en la parte superior de la estructura. Para que el TMD pueda reducir la respuesta dinámica de una estructura debe existir una coincidencia entre las frecuencias naturales de vibración de la estructura y del oscilador resonante. Los osciladores resonantes son bastante efectivos en la reducción de las vibraciones producidas por el viento en edificios altos. También puede ser empleados para la reducción de la respuesta sísmica.
    Amortiguadores de masa (tuned mass dampers TMD)
    'Estudio comparativo de edificios con aislamiento sísmico en la base'
    Modelo experimental del amortiguador TLSD tuned liquid sloshing dampers análisis como sistema de 1 gdl
    'Estudio comparativo de edificios con aislamiento sísmico en la base'
  • Sistemas Activos

  • Guía de Evaluación Sísmica de Daños Sísmicos

     

    I. INTRODUCCION

    El reciente terremoto ocurrido el 27 de febrero de 2010 sometió a las construcciones a una energía de movimiento mayor de la que históricamente había sucedido en la zona central del país provocando daños de diversa consideración en los edificios.
    El objetivo del diseño sismoresistente, regido en Chile por la norma NCH 433. Of. 96, es impedir que la estructura resistente de un edificio colapse o se desmorone evitando así la pérdida de vidas humanas. Pero es prácticamente imposible que un sismo de tal magnitud no provoque algún tipo de daño en las construcciones.
    Los propietarios de viviendas en altura o de pocos pisos pueden realizar una evaluación previa de los daños sufridos por sus propiedades siguiendo algunas sencillas recomendaciones que se entregarán en esta guía.
    · Es importante distinguir entre daño estructural y no estructural. El primero es el sufrido por el sistema o esqueleto resistente del edificio (pilares, vigas, muros de carga, losas) y que compromete su estabilidad constituyendo un real peligro para los habitantes; el segundo se refiere a todos los elementos constructivos no resistentes (ciertos muros, tabiques y otros) que no comprometen la estabilidad de la obra, pero dependiendo de la magnitud del daño sufrido pueden constituir un peligro a la integridad física de los ocupantes.
    · La aparición de fracturas y grietas en tabiques no estructurales pueden parecer daños realmente espectaculares, pero es importante recordar que éstos no tienen relación con la estructura resistente del edificio y que incluso su rotura ayuda a disipar la energía en la estructura principal.
    · También es posible que el sismo haya generado microfracturas en las instalaciones de la vivienda (electricidad, gas, agua) las que no son evidentes en un principio, pero pueden constituir un problema con el tiempo.
    · Es recomendable que los propietarios realicen un catastro fotográfico de sus viviendas en el caso de existir seguros comprometidos o para postular a los diversos fondos de reconstrucción que podría ofrecer el gobierno.

    · Es imprescindible que un especialista en estructuras evalúe lo antes posible la propiedad.

    II. CONCEPTOS GENERALES
    clip_image001Fig. 1 Fig. 2
    clip_image004Fig. 1 y 2: El efecto de un terremoto sobre un edificio se incrementa con cada oscilación. Las fuerzas horizontales de corte actúan poderosamente sobre su base y sus solicitaciones se van incrementando según la altura del edificio.
    · La acción sísmica se traduce en esfuerzos verticales y horizontales que actúan simultáneamente por vibración sobre la estructura. Para el diseño y análisis de estructuras se suele considerar a las cargas horizontales como las más significativas por las respuestas que generan en el edificio.
    · Los edificios de baja altura se comportan mejor que los altos debido al incremento de la oscilación que se produce en los pisos altos. En cualquier caso la cimentación de sus estructuras debe estar debidamente arriostrada.
    · Existen dos tipos básicos de estructuraciones para absorber los esfuerzos generados por los movimientos sísmicos del suelo:
    1. Estructuración de pórticos formada por vigas y pilares.
    2. Estructuración de muros, los que pueden tener o no dinteles o vigas de acoplamiento
    En ambos casos es muy ventajoso el uso de losas para que desarrollen la función de diafragma rígido al nivel del cielo de cada piso, ya que con ello todos los elementos resistentes se incorporan a la labor de resistir los dañinos esfuerzos horizontales (de corte) que solicitan cada piso del edificio.
    clip_image006
    Fig. 3: Tipos de estructuraciones aptas para resistir cargas horizontales.
    · La estructuración de muros resistentes presenta grandes ventajas sismoresistentes, ya que conforman sistemas muy difíciles de colapsar y ofrecen gran resistencia a las deformaciones laterales minimizando con ello los daños en los elementos no estructurales y en el equipamiento del edificio. Su desventaja es su alta rigidez que atrae esfuerzos sísmicos mayores los cuales deben ser disipados por sus cimientos, y la limitación que existe en el diseño de las plantas.
    · Los pórticos proporcionan estructuras más flexibles que atraen menores esfuerzos sísmicos permitiendo la disipación de los mismos, y otorgan mayor libertad en el diseño de las plantas. Su gran flexibilidad permite, sin embargo, una mayor deformación que produce daños en los elementos no estructurales, pudiendo colapsar la estructura en sismos de gran severidad.
    · En Chile en la construcción de edificios de vivienda en altura se suele utilizar preferentemente un sistema mixto de pórticos reforzados mediante muros de carga internos y externos. El caso nacional tiene una amplia y ventajosa experiencia en este tipo de construcciones. En estos casos los muros tienden a tomar una mayor proporción de los esfuerzos en los niveles inferiores, mientras que los pórticos lo hacen en los niveles superiores.
    · Es importante distinguir los muros resistentes de aquellos tabiques que debido al estuco y terminaciones parecen serlo. Los primeros son generalmente de hormigón armado y continuos en todos los pisos (aunque algunos edificios antiguos suelen tener gruesos muros de albañilería de ladrillo como muros resistentes), mientras que los tabiques de albañilería o de otro material más ligero no presentan una función estructural, sólo separan dependencias y pueden no estar presentes en todos los pisos.

    III. RECONOCIMIENTO DE DAÑOS

    · Lo primero que debe hacer el interesado es reconocer el tipo de estructura que sostiene el edificio.
    Posiblemente para esto se necesite la ayuda de un profesional. Es recomendable disponer de los
    clip_image008planos de arquitectura y estructuras.
    Fig. 4: Principales elementos de una estructura resistente de hormigón armado, en un diseño de tipo tradicional.
    ·

    jueves, 9 de mayo de 2013

    Placas Tectónicas



    Límites de placa
    Los límites de placa se encuentran en el borde de las placas litosferica y son de tres tipos: convergente, divergente y conservativa. Amplias son zonas de deformación son características usuales de los límites de debido a la interacción entre dos placas. Los tres límites son caracterizados por sus movimientos distintos.
    La primera clase de límite de placa es el divergente, o centro que se separa. En estos límites, dos placas se mueven lejos una de la otra. Como las dos se separaran, los cantos del medio del océano se crean como magma del manto a través de una grieta en la corteza oceánica y se enfrían. Esto, alternadamente, causa el crecimiento de la corteza oceánica de cualquier lado de los respiraderos. A medida que las placas continúan moviéndose, y se forma más corteza, el fondo del océano se amplía y se crea un sistema de canto. Los límites divergentes son responsables en parte de conducir elmovimiento de las placas.
    Como usted puede imaginarse, la formación de la corteza nueva de cualquier lado de los respiraderos empujaría a las placas a apartarse, como vemos al canto del Medio Atlantico, que ayuda a Norteamérica y Europa a separase cada vez más lejos. Los cantos del Medio océano son encadenamientos extensos de montañas en el océano y son tan altos si no lo son aun más que los encadenamientos de montaña en el continente.
    El proceso que conduce realmente al movimiento en estos cantos se conoce como convección. El magma es empujado hacia arriba a través de las grietas de los cantos por las corrientes de la convección. Mientras que un poco de magma entra en erupción hacia fuera a través de la corteza, el magma que no entra en erupción continúa moviéndose bajo la corteza con la corriente lejos de la cresta del canto. Estas corrientes continuas de la convección, llamadas células de la convección, ayudan a mover las placas ausentes de uno para permitir que más corteza sea creada y el suelo de mar crezca. Este fenómeno se conoce como separación del mar al suelo.
    Los cantos del medio del océano también desempeñan un papel muy crucial en el desarrollo de la teoría de la tectónica de placas, debido a la calidadúnica que los minerales basalto que poseen. El basalto contiene una cantidad justa de minerales magnéticos, que alinean con el campo magnético de la tierra sobre la cristalización.
    En el pasado, el campo magnético de la tierra ha cambiado la polaridad, causando una revocación en el campo magnético, que se preserva cuando los cristales se forman. La alineación de estos minerales magnéticos se puede utilizar para conocer la edad de la corteza, puesto que pueden ser correlacionados con edades de revocaciones magnéticas conocidas en la historia de la tierra. Esto desempeña un papel dominante en el desarrollo de la teoría de tectónica de placas porque es la primera prueba positiva que las placas se movían y lo habían estado haciendo durante la mayoría de tiempogeológico. La corteza más vieja del océano tuvo su origen hace 100-65 millones de años (cretáceo temprano), que es relativamente reciente en tiempo geológico.
    Si este es el caso, ¿ a dónde se fue el resto de la corteza ?
    Esto nos conduce al segundo tipo de límite de la placa, el convergente. Éstos son los márgenes de la placa donde una placa está reemplazando otra, de tal modo forzando a la otra a ir debajo de ella. Estos límites están en la forma de sistemas del foso y del arco de isla.
    Toda la vieja corteza oceánica está entrando estos sistemas mientras que la corteza nueva se forma en los centros que se separan. Los límites convergentes también explican porqué la corteza más vieja que la cretácea no se puede encontrar en ningún fondo del océano -- ha sido destruida ya por el proceso del subducción.
    Las zonas de subducción son donde se localizan los terremotos muy fuertes, que ocurren por la acción de la losa abajo que va obra recíprocamente con la losa que reemplaza. El " anillo del fuego " alrededor de los márgenes del Océano Pacífico es debido exactamente a las zonas del subduccion encontradas alrededor de los bordes de la placa del Pacífico.
    La subducción también es la causa de la actividad volcánica en lugares como Japón: mientras que una losa va más profunda debajo de la placa que reemplaza, llega a ser más caliente y más caliente debido a su proximidad a la capa. Esto hace que la losa se derrita y forme el magma, que se mueve hacia arriba a través de la corteza y forma eventualmente los volcanes (arcos de isla) en corteza oceánica o masas intrusivas enormes (los plutons y los batolitos) en corteza continental.
    Las islas aleutianas son otro ejemplo de la expresión superficial de la subducción.

    miércoles, 1 de mayo de 2013

    Estudio del comportamiento del hormigón armado ante esfuerzos normales y tangentes mediante modelos seccionales de interacción Completa

     
    clip_image004
    El análisis del comportamiento de los sistemas estructurales puede abordarse mediante diferentes niveles de idealización, pasando desde la consideración del mismo como un sólido tridimensional, hasta su asimilación a un sistema reticular de barras caracterizadas por una sección transversal, tal como se representa en la Fig. 1.
    Si bien la modelización como sólido puede ser más representativa de la realidad física de las estructuras de ingeniería, se debe reconocer que los modelos de barras presen- tan ventajas importantes respecto a aquélla. Aunque habitualmente se suele mencionar como principal ventaja el menor coste computacional de los modelos de barra, lo cierto es que ésta, aunque importante, va perdiendo relevancia con el desarrollo de software y hardware más eficientes. Actualmente, los principales aspectos que hacen que los mo- delos de barras sigan siendo, con diferencia, los más empleados para idealizar estructuras de ingeniería civil son:
    • Facilidad en la construcción del modelo
    • Interpretación de resultados en términos de esfuerzos generalizados directamente aplicable al dimensionamiento
    • Reducción de grados de libertad del
    sistema
    • Menor coste computacional
    • Resultados muy satisfactorios para las regiones “B” gobernadas por esfuerzos normales.
    Los modelos de barras se han aplicado al análisis no lineal de estructuras de forma satisfactoria, siendo capaces de reproducir numerosos fenómenos que tienen lugar en el hormigón armado, incluyendo el comportamiento post- fisuración, próximo a la rotura, fenómenos di- feridos, acciones ambientales, etc. Ver Marí (1), Marí y Bairán (2), entre otros. En este sentido, la respuesta de toda la barra viene caracteriza- da por la respuesta de la sección transversal. Por lo tanto, una adecuada simulación de la respuesta de la sección ante los esfuerzos a la que se ve sometida es trascendental en los resultados predichos.
    A pesar de la versatilidad de los modelos de barras es necesario reconocer ciertas carencias implícitas en las formulaciones de los mismos. Concretamente, al considerar que los elementos son suficientemente lar- gos, se desprecia la existencia de tensiones y deformaciones en direcciones diferentes a la normal a la sección, por lo tanto, sólo son capaces de reproducir los efectos de esfuerzos normales: axil y flexión. Asimismo, la geometría de la sección transversal
    es invariable con la solicitación y sólo es posible estudiar “regiones B”. Si bien estas limitaciones no afectan a un número importante de casos prácticos, resulta necesario mejorar algunas de ellas para reproducir fenómenos de carga más generales en estructuras constituidas de materiales como el hormigón armado. Por ejemplo, los esfuerzos tangenciales (cortante y torsión) y los efectos del confinamiento producido por armadura transversal o por encamisado de chapa. En el contexto de este artículo, se denominarán elementos fibra tradicionales” a los modelos seccionales con estas características descritas en este párrafo.
    Algunos de los aspectos que pueden mejorar- se son la existencia de un estado multiaxial de tensiones y deformaciones y la presencia de armadura transversal, cuya elongación implica la necesaria distorsión de la geometría de la sección transversal. Estas limitaciones hacen que exista un importante desequilibrio entre el nivel de precisión alcanzada para solicitaciones de esfuerzos normales puros respecto a los casos en que existen esfuerzo- zos tangenciales. El interés de incluir estas mejoras en los modelos de barras abarca un gran número de aplicaciones: evaluación del comportamiento no lineal de estructuras de hormigón ante cargas estáticas que producen fuertes solicitaciones normales y tangentes, evaluación de la capacidad de redistribución real de las estructuras, estudio de estructuras de compuestos no-isótropos, etc.
    Entre estas aplicaciones, cabe resaltar la gran relevancia en el estudio del comportamiento sísmico de las estructuras de hormigón, ya que en los grandes terremotos recientes los fallos estructurales en elementos supuestamente bien construidos de acuerdo a normativas modernas tienen involucradas, de una u otra forma, esfuerzos de cortante o torsión, ver Fig.
    2. Por otro lado, se debe tener en cuenta que, frecuentemente, en el proyecto sismorresistente se espera la formación de zonas plásticas en los extremos de las vigas y pilares donde los esfuer zos cortantes, momentos flectores y esfuerzos axiles son máximos al mismo tiempo. Más aún, el rango natural de trabajo de estas regiones es el no lineal. Por lo tanto, la necesidad de disponer de modelos de barras capaces de re- producir satisfactoriamente el comportamiento de estas regiones es evidente.
    En los últimos años se ha realizado un gran esfuerzo en el desarrollo de modelos seccio- nales capaces de dar solución a las necesi- dades arriba indicadas, Vecchio y Collins(3), Petrangeli (4), Ranzo (5), Bentz (6), entre otros. En general, estos modelos abordan el problema de flexión recta de secciones simé- tricas o bien consideran el estado de carga
    clip_image002más general de forma