domingo, 7 de agosto de 2016

Construcciones antisísmicas

Vivimos en un mundo donde predomina la curiosidad y el deseo de un desarrollo que revolucione nuestro contexto en general, lo que nos ciega ante nuestro propio avance que ya no está solo al alcance de la imaginación, se ha vuelto una realidad que se presenta de tal forma facilitándonos la vida y asiendo a esta más confortable. Es momento de comenzar a tomar en cuenta el auténtico esfuerzo del hombre por subsistir, no demos por desapercibidos aquellos verdaderos logros a los que hemos llegado en cuanto a las herramientas para este único fin, dejemos a un lado los posibles descubrimientos y vayámonos a las reales invenciones, ahí es donde nos percataremos de lo realmente magnifico que puede ser el pensamiento humano, hasta donde alcanza la creatividad del individuo por encontrar el bienestar que tanto desea obtener, es tiempo de apreciar aquellas maravillosas obras que no podríamos apreciar sin saber lo que nos desean transmitir, valorar lo que nos brindan, puesto a que no solo se trata de una simple infraestructura, sino más bien es como ya te habrás percatado audaz lector, nos referimos a un admirable ejemplo de cuán grande llega a ser la Ingeniería Civil y los métodos de construcción que de esta se derivan, entenderemos que el hombre no es el único que debe mantenerse de pie, es hora de conocer las imponentes construcciones antisísmicas.

Resumen

El texto trata en general de las construcciones antisísmicas, menciona algunos detalles para comprender mejor el porqué de las construcciones, toca puntos relacionados con el tema como lo son "sismos" y la manera en que afectan a las construcciones, mencionaremos algunos de los muchos beneficios que nos brindan este tipo de construcciones, haremos un ligero análisis en cuanto a sus características, la manera y/u observaciones a tomar en cuenta para su construcción, así mismo, también conoceremos algunos de los materiales principales que se deben incluir en toda obra antisísmica, también conoceremos ciertos aspectos de estos. Comprenderemos porque el uso de estas tecnologías y sabremos de situaciones en las cuales han actuado y como ha sido el resultado de dicha participación.
Monografias.com

Sismos

Definición del concepto sismo según la Real Academia Española: terremoto o sacudida de la tierra producida por causas internas
-Definición general de un sismo: Se denomina sismo o terremoto a las sacudidas o movimientos bruscos del terreno producidos en la corteza terrestre como consecuencia de la liberación repentina de energía en el interior de la Tierra o a la tectónica de placas. Esta energía se transmite a la superficie en forma de ondas sísmicas que se propagan en todas las direcciones. El punto en que se origina el terremoto se llama foco o hipocentro; este punto se puede situar a un máximo de unos 700 km hacia el interior terrestre. El epicentro es el punto de la superficie terrestre más próximo al foco del terremoto.
-Orígenes de un sismo: Suelen producirse al final de un ciclo denominado ciclo sísmico, que es el período de tiempo durante el cual se acumula deformación en el interior de la Tierra que más tarde se liberará repentinamente. Dicha liberación se corresponde con el terremoto, tras el cual, la deformación comienza a acumularse nuevamente.
Tipos de sismos:
-Volcánicos: directamente relacionados con las erupciones volcánicas. Son de poca intensidad y dejan de percibirse a cierta distancia del volcán.
-Tectónicos: originados por ajustes en la litosfera. El hipocentro suele encontrarse localizado a 10 o 25 kilómetros de profundidad, aunque algunos casos se llegan a detectar profundidades de hasta 70 kilómetros y también pueden ser más superficiales.
-Batisismos: su origen no está del todo claro, caracterizándose porque el hipocentro se encuentra localizado a enormes profundidades (300 a 700 kilómetros), fuera ya de los límites de la litosfera. Se pueden deber a transiciones críticas de fase en las que materiales que seducen se transforman bruscamente, al alcanzarse cierto valor de presión, en otros más compactos.

¿Cómo afecta un sismo a una edificación?

Un sismo no daña a las edificaciones por impacto como lo haría un equipo de demolición, básicamente lo daña la fuerza de la inercia que se genera a partir de la vibración de la masa del edificio. La forma y dimensiones del edificio así como su masa, afectan al edificio.
El peso de los edificios es lo que produce el colapso, ante un sismo los edificios caen verticalmente, es poco común que caigan hacia los lados. Las fuerzas laterales tienden a doblar y quebrar las columnas y muros, la acción de la gravedad sobre la debilitada estructura produce el colapso.
La forma de los edificios también puede influir en la respuesta de estos ante un sismo, una edificación es un conjunto de partes unidas entre sí, cada una está sujeta a "esfuerzos" horizontales y verticales por estar unidas con el resto de la estructura.
En cada edificio el movimiento del suelo afecta d diferente forma, la altura influirá con la fuerza a la que estará sometida la edificación. La proporción es una de las características más importante para cada edificio, para los edificios altos la altura por la esbeltez se verá limitado a 4 por 1.
Los edificios demasiado esbeltos al estar sujetos a la fuerza de un sismo tienden a caer de lado, presentan varias complicaciones al evaluar las fuerzas a las que estarán sujetas las columnas encontradas en el perímetro del edificio.
Monografias.com

sábado, 18 de junio de 2016

Rehabilitación sísmica de edificaciones históricas en tapia pisada: estudio de caso de capillas doctrineras reforzadas con malla de acero y madera de confinamiento

1. INTRODUCCIÓN Y JUSTIFICACIÓN

El proceso de evangelización de la población indígena en Colombia, contribuyó a la fundación de nuevas poblaciones especialmente en el área central del país. Al llegar los españoles al área andina encontraron cerca de 300 caseríos de indios muiscas (1), en donde se establecieron doctrinas, que agrupaban los indios dominados para ser explotados como renta e instrumento de producción. El trazado del centro doctrinero, se comenzaba por la plaza alrededor de la cual se ubicaba la iglesia, el atrio, las capillas posas y la casa cural; luego se procedía al repartimiento de solares entre los conquistadores y caciques de cada tribu.
Las iglesias poseían una tipología llamada templos doctrineros (capillas o iglesias doctrineras) que se edificaban de acuerdo a lo establecido en las Leyes de Indias y los contratos de construcción. La construcción era costeada por los encomenderos y los indios contribuían con su trabajo y alimentos para el constructor. Los sacerdotes doctrineros tenían la misión de completar la conquista y fueron los primeros educadores en el nuevo continente. La iglesia era el eje formativo de los nuevos pueblos y servía como base para el desarrollo de lo urbano. (Figura 1).
Figura 1. Volumetría de la Iglesia de Suesca en la zona Andina Colombiana.
En los contratos de construcción de las capillas doctrineras se definían aspectos arquitectónicos y estructurales. Algunas de las especificaciones ordenadas en los contratos eran (2):
  1. Ancho de la capilla doctrinera: entre 8,4 m y 10,1 m
  2. Longitud de la capilla doctrinera: 42 a 45 m
  3. Altura de la capilla doctrinera: 5 m
  4. Tipo de cubierta: Sistema de par y nudillo
  5. Capilla mayor: Debía construirse cuadrada u ochavada
  6. Iluminación: Debían construirse 10 ventanas, 6 para el cuerpo de la iglesia y 4 para el presbiterio
  7. Acabados de puertas y ventanas: Debían construirse en madera de acuerdo a los parámetros dados para iluminación.
Basados en esta tipología se han encontrado 41 iglesias (3) en el área andina colombiana, aunque el número de edificaciones construidas con este tipo de contrato fue de 125. De estas han sido declaradas hasta la fecha como Monumentos Nacionales solo 22 iglesias (4).

2. SISTEMA CONSTRUCTIVO

De acuerdo visitas técnicas hechas a más de 10 capillas doctrineras, se presentan las principales características del sistema constructivo.
2.1. Cimentación y sobre-cimiento
Los cimientos presentan una forma rectangular con una profundidad de 1,30 m y ancho hasta dos veces el espesor del muro (Figura 2). Para su construcción se emplearon piedras pegadas con una mezcla de barro y cal. El sobrecimiento encontrado tiene alturas promedio de 0,40 m. Para proteger el muro de la humedad del suelo, se encontró evidencia de diferentes impermeabilizantes naturales como: brea, betún, aislantes naturales o piedras planas (lajas).
Figura 2. Muro típico de templo doctrinero.
2.2. Muros
Se encontraron anchos de los muros hasta de 1,26 m y alturas entre 5,04 m y 6,72 m (Figura 2). La técnica constructiva predominante es la tapia pisada (Rammed earth). Los vanos de puertas y ventanas en el siglo XVI se realizaban en adobe y en la parte superior se colocaba un dintel en madera con un rebase de aproximadamente 0,3 m de cada lado del vano. Los pañetes se aplicaban como protección del muro empleando una mezcla de cal, productos aglutinantes y fibras naturales.
2.3. Vigas de coronación y estructura de cubierta
Las vigas de coronación se colocaban en la parte superior del muro y recibían la estructura de cubierta. Consistían en madera rolliza o escuadrada (entre 0,20 m y 0,30 m); y se le cubrían con un impermeabilizante natural. El techo era a dos aguas con una inclinación entre 38 y 45 grados. La estructura de cubierta era una armadura triangular de par y nudillo en madera rolliza apoyada sobre las vigas de coronación. Sobre la cubierta se colocaba un entramado de chusque y cuan y una capa de barro. El acabado de cubierta se hacía con paja y posteriormente con tejas de barro.

sábado, 4 de junio de 2016

CEINCI-LAB un software libre para hallar la curva de capacidad sísmica de pórticos con disipadores ADAS o TADAS

RESUMEN
CEINCI-LAB es un sistema de computación desarrollado en MATLAB que permite realizar el análisis estático o dinámico de estructuras, en forma amigable y a la vez sirve para que el usuario pueda afianzar sus conocimientos estructurales. En este artículo se presentan los aspectos más importantes para hallar la curva de capacidad sísmica resistente de un pórtico plano de hormigón armado o de acero, con disipadores de energía ADAS o TADAS que se hallan sobre contravientos Chevrón, empleando la Técnica del Pushover. Para el conjunto contraviento-disipador se presentan dos modelos de análisis, el uno es mediante dos diagonales equivalentes y en el otro al elemento disipador se lo considera como un elemento corto. Para éste último caso, el elemento disipador es analizado de dos maneras, en la primera se encuentra la matriz de rigidez del elemento disipador y en la segunda se consideran varias dovelas rectangulares de sección constante para el elemento disipador.


1. Introducción Una forma de reforzar sísmicamente estructuras, es mediante la colocación de disipadores de energía ADAS (Added damping and stiffnes) o TADAS (Triangular plate added damping and stiffness), sobre contravientos de acero tipo Chevrón, como se observa en la Figura 1 (Whittaker et al. 1989; Tsai et al. 1993). Los ADAS están formados por placas de acero en forma en forma de un reloj de tiempo, con dimensiones þ1 en la parte más ancha y þ2 en la sección más angosta; en cambio la forma de los TADAS es triangular con dimensión þ, en la parte más ancha; para los dos disipadores h es la altura del disipador y t es el espesor de una de las placas, que pueden ser de acero o aleaciones a base de cobre, zinc y aluminio (Heresi, 2012).

Figura 1. Disipadores de energía ADAS (derecha) y TADAS (izquierda) sobre contravientos de acero Chevrón
La forma de los disipadores ADAS permite que todo el elemento plastifique por flexión en curvatura doble y los TADAS lo hagan en curvatura simple. (Aguiar et al., 2015; Chistopupoulus C. y Filiatraul A., 2006). Estos disipadores incrementan el amortiguamiento y rigidez de la estructura.
Ahora en este artículo, se presenta los aspectos más importantes del uso del sistema de computación CEINCI-LAB para obtener la curva de capacidad sísmica resistente de pórticos de hormigón o acero en los cuales se ha colocado alguno de los disipadores indicados sobre contravientos Chevrón (diagonales en forma de V invertida), aplicando la técnica del pushover en forma monotónica, que consiste en aplicar cargas laterales en cada uno de los pisos hasta llevar a la estructura a un punto que se considera el colapso.
2. Modelos de contraviento-disipador
En la parte superior de la Figura 2 se presenta el modelo de la diagonal equivalente, en realidad son dos diagonales con las que se trabaja el conjunto diagonal-disipador.
(1)
Donde es la rigidez equivalente, axial, de una de las diagonales; es la rigidez axial de la diagonal de acero; es la rigidez secante (efectiva) del diagrama bilineal que define el comportamiento del disipador; θ es el ángulo que forma la diagonal equivalente con el eje horizontal. (Whitaker et al., 1989).

Figura 2. Modelos desarrollados para el conjunto disipador-contraviento
En la parte inferior de la Figura 2, se observa que el conjunto contraviento-disipador, está compuesto por tres elementos: dos diagonales de acero y un elemento disipador. A la derecha de esta figura se indica el sistema de coordenadas globales de cada uno de estos elementos; la diagonal de acero es un elemento de una armadura plana, Kotulka (2007), y AISC-360, 2010.
Para el elemento disipador se ha encontrado la matriz de rigidez del elemento de dos formas, denominadas A y B. En la primera forma se halla la matriz de rigidez como un elemento de sección variable, cuya geometría está definida por la forma de los disipadores ADAS o TADAS, ver Figura 3. (Tena 1997).

Figura 3. Modelo 2 A; sistema de coordenadas globales de elemento disipador
En cambio, en el modelo B, se emplea el método de las dovelas, como se ilustra en la Figura 4, se halla la matriz de rigidez de cada dovela como si fuera un elemento de sección constante; luego se obtiene la matriz de rigidez por ensamblaje directo y finalmente se condensa a las coordenadas exteriores que se muestran en laFigura 4.

Figura 4. Modelo 2 B; dovelas consideradas en disipadores ADAS y TADAS
En la Tabla 1, se describen los programas, que utilizan para los dos modelos de cálculo, indicados en la Figura 2; para el modelo 2 se indican los programas para los modelos A y B.
Tabla 1. Programas que determinan la rigidez del disipador sobre contravientos, de acuerdo a los dos modelos de cálculo

3. Diagramas momento-curvatura y momento-rotación
A la izquierda de la Figura 5, se presenta el diagrama momento-curvatura, que define el comportamiento no lineal de los elementos; la curva del primer cuadrante corresponde al caso en que la armadura a tracción se halla en la parte inferior y la curva del tercer cuadrante al caso opuesto en que la armadura a tracción se halla en la parte superior. El diagrama contempla tres zonas, una elástica hasta el punto Y, de rigidez otra plástica de rigidez y una residual de rigidez .

Figura 5. Diagramas Momento curvatura y Momento rotación
(2)
Donde: es el momento y curvatura en el punto de fluencia, que se obtiene empleando el trabajo de Y. Park (1985) que tiene un respaldo teórico y experimental en base al ensayo de 400 elementos. , son el momento y curvatura en el punto último que se halla en base a la recomendación del ASCE 41 de 2013; α es la relación entre la rigidez post fluencia con respecto a la rigidez elástica.
A la derecha de la Figura 5 se presentan los puntos notables del diagrama momento rotación. El punto B corresponde al de fluencia; el C al último y el segmento es el punto R (momento residual). ASCE 41 proporciona las variables a, b ,c con las cuales se hallan los puntos C y E; a partir del punto de fluencia, para algunas secciones de acero y para hormigón armado.
En el segmento , el momento residual , de tal manera que la rigidez a flexión no es cero sino que tiene cierto valor de tal manera que el momento sea . En Mora y Aguiar (2015) está bien detallada la forma de encontrar la rigidez residual a través de análisis estructural, la misma que es válida hasta una rotación menor o igual a b ; el coeficiente b reporta el ASCE 41 y es la rotación en el punto de fluencia.
El paso de rotación a curvatura se realiza por medio de la longitud plástica , por esto cuando la sección ingresa al rango no lineal se obtiene la longitud plástica en base al diagrama de momentos, Ger and Cheng, (2012).
Se ha detallado el cálculo, solo para flexión, pero para el caso de fuerza axial se procede en forma similar con el momento de fluencia reducido debido a las cargas axiales, Li (2007); en Aguiar et al. (2015) se indica su cálculo. En la Tabla 2 se describen los programas que definen el comportamiento no lineal de los elementos, de los diferentes elementos de la estructura y la contribución de ellos a la matriz de rigidez de la estructura.

Figura 6. Secciones de acero programadas en CEINCI-LAB

Tabla 2. Programas para hallar contribución a la matriz de rigidez de la estructura de los elementos: columnas, vigas, disipadores y montantes de acero


viernes, 26 de febrero de 2016

Daños estructurales en construcciones patrimoniales de la Iglesia Católica en la Arquidiócesis de Concepción producto del sismo del 27 de febrero 2010 (Chile)

El 27 de febrero del 2010 a las 3:34am (hora local), la zona centro-sur de Chile fue sacudida por un terremoto magnitud momento 8,8. A consecuencia de ello varias iglesias de la Arquidiócesis de Concepción sufrieron daños desde menores hasta algunas que tuvieron que ser demolidas o que simplemente colapsaron en el mismo instante del terremoto. Por lo anterior, las autoridades de la Universidad Católica de la Santísima Concepción pidieron se conformara una comisión para revisar estas iglesias y capillas. A través de un trabajo de ingenieros, arquitectos y constructores que constituyeron esta comisión, se logró tener una evaluación de estas construcciones. En esta evaluación se identificaron algunas fallas típicas propias de este tipo de construcción que evidenciaron que frente a movimientos telúricos de esta magnitud era claro que fallarían. Por eso este trabajo también trata de la identificación de estas fallas y entregar recomendaciones para que no se vuelvan a producir.
 
Introducción
Este artículo presenta las inspecciones estructurales realizadas a varias construcciones como la Catedral de Concepción e iglesias y capillas pertenecientes al Arzobispado de Concepción. Este trabajo fue encomendado por las autoridades de la Universidad Católica de la Santísima Concepción, el Rector Dr. Juan Cancino y el Gran Canciller Monseñor Ricardo Ezzati, a través de la Vicerrectoría de Asuntos Económicos y Administrativos. La duración de los trabajos fue de alrededor de 3 meses. Si bien se inspeccionaron 34 iglesias y otras estructuras, sólo se presentan análisis de las más importantes y simbólicas.
Se entregan algunos aspectos generales del sismo del 27/02/2010 y una comparación con otros eventos ocurridos en tiempos pasados. Además se presenta una descripción de las estructuras resistentes, los daños observados y se realiza un análisis de las causas de dichos daños. Esta información fue parte de los informes estructurales utilizados para su reparación. Las estructuras inspeccionadas corresponden a la Catedral de Concepción, El Sagrario y la Iglesia La Pompeya, todas ubicadas en el centro de Concepción. Además, se inspeccionó el Templo Parroquial Jesús Obrero, ubicado en el sector Schwager de Coronel y el Santuario de Yumbel. La Figura 1 muestra la ubicación geográfica de las estructuras inspeccionadas de Yumbel y Schwager respecto a Concepción.


A pesar de que se han publicado trabajos sobre los efectos del terremoto del 27 de febrero 2010, estos han sido principalmente sobre daños en edificios habitacionales y en estructuras industriales (GEER 2010, Betanzo, 2010). Es por ello que este trabajo aporta en la investigación de estructuras de iglesias, las cuales son en general más antiguas y por lo tanto ya han sufrido antes grandes terremotos.
Aspectos generales del sismo
El sismo del 27 de febrero del año 2010, de magnitud momento 8.8, tuvo su epicentro en las costas de Cobquecura, región del Bío Bío. Para mayor información sobre este terremoto revisar Barrientos (2010) y Quezada et al. (2010). La Figura 2 muestra la localización del epicentro, el cual se ubicó a 100 km al norte de la ciudad de Concepción, lo que explica la gran intensidad del sismo en esta zona.


La intensidad de un sismo se mide mediante la escala de Mercalli. Esta escala posee 12 grados y mide la intensidad en un lugar específico. Por lo tanto refleja la sensación que perciben las personas de tal lugar de ese movimiento telúrico y del estado en que quedan las estructuras, luego de una evaluación estructural, en caso de intensidades mayores a VI. Para una descripción de los grados de la escala de Mercalli modificada, ver por ejemplo Sauter (1989). De este modo, se pueden reportar varias intensidades para un mismo sismo, dependiendo del lugar donde se obtengan, las cuales van decreciendo a medida que la distancia desde la zona de ruptura aumenta. La Tabla 1 muestra las intensidades reportadas en distintas ciudades para el evento del 27 de febrero 2010. Se puede observar que el máximo valor alcanzado se reportó en Concepción, alcanzando un valor de IX. Otros registros de intensidades algo menores y más detallados han sido reportados por Astroza et al. (2010).


Según la descripción de la escala, con un sismo de intensidad IX se produce pánico general. "Las estructuras de albañilería mal proyectadas o mal construidas se destruyen. Las estructuras corrientes de albañilería bien construidas se dañan y a veces se derrumban totalmente. Las estructuras de albañilería bien proyectadas y bien construidas se dañan seriamente. Los cimientos se dañan. Las estructuras de madera son removidas de sus cimientos. Sufren daños considerables los depósitos de agua, gas, etc. Se quiebran las tuberías (cañerías) subterráneas. Aparecen grietas aún en suelos secos. En las regiones aluviales, pequeñas cantidades de lodo y arena son expelidas del suelo".
Como una comparación, el sismo de Chillán de 1939 fue catalogado como intensidad X en la escala de Mercalli. Según reportes oficiales, el 50% de las construcciones existentes en Chillán colapsaron y unas 5.650 personas fallecieron, aun cuando la prensa contabilizó unos 30.000 (Villavicencio, 2010). Las construcciones de esa época eran principalmente de albañilería sin confinar, madera y adobe, lo que explica el alto porcentaje de estructuras destruidas. Por otro lado, el sismo del 21 de mayo de 1960 sigue siendo el más grande de la historia medido instrumentalmente. Alcanzó una magnitud momento 9.5 y una intensidad VIII en Concepción. Aun cuando la intensidad en Valdivia alcanzó los XI grados. En Concepción y Talcahuano se estimó en más de 10.500 las viviendas destruidas. El puente carretero sobre el río Bío Bío se destruyó en tres partes, especialmente en la zona aledaña a Concepción, donde se derrumbó un tramo de 45 m (Steinbrugge y Flores, 1963; Villavicencio, 2010).
Los dos sismos anteriormente mencionados, más el de 1985 ocurrido en Santiago y Valparaíso, son de gran importancia para el estudio de la ingeniería antisísmica. El sismo de Chillán de 1939 demostró la ineficacia de las albañilerías sin armar para resistir los esfuerzos sísmicos y las bondades de la albañilería confinada. Del mismo modo, el evento de 1960 señaló la considerable importancia que tiene la Mecánica de Suelos y su consideración en los proyectos de ingeniería. De este modo, La Ley de Ordenanza General de Construcciones y Urbanización, vigente desde 1931, fue modificada. Además, en 1972 entró en vigencia la primera Norma Chilena para el cálculo sísmico de edificios NCh 433, la que fue modificada en el año 1996 tras la incorporación de información del terremoto de 1985 (Flores 1998). Por lo tanto, es muy probable que nuevas modificaciones sean implementadas en la norma NCh 433 cuando se analicen los datos obtenidos del sismo del 27 de febrero 2010. Sin embargo, la norma NCh 433 no es directamente aplicable al tipo de estructuración que tienen la mayoría de las iglesias.
Inspecciones realizadas
Iglesia La Pompeya
Esta iglesia está ubicada en la intersección de Lincoyán y San Martín en Concepción y consta de una estructura en base a muros de albañilería de 1 y 2 m de espesor aproximadamente con cerchas y pilares de madera y una techumbre de planchas metálicas (Figura 3). La fecha de construcción es de aproximadamente el año 1850, según antecedentes aportados por los sacerdotes de esta iglesia. Por lo tanto posterior al gran terremoto y tsunami ocurrido en Concepción en 1835. El año 1940 se hicieron trabajos de refuerzo de la estructura de la nave central en base a vigas de hormigón armado de una altura aproximada de 1 m que unieron los muros laterales en la parte central de la iglesia y el año 1960 se hicieron trabajos de refuerzo del frontón.