domingo, 25 de octubre de 2015

Comparación de tres metodologías de análisis sísmico de túnel NATM en suelos finos de Santiago

Introducción
Los análisis sísmicos de túneles han sido tradicionalmente abordados mediante expresiones analíticas para geometrías sencillas que no incluyen las secuencias constructivas ni historiales de esfuerzos (Wang, 1993; Penzien y Wu, 1998; Penzien, 2000). Últimamente, algunos softwares de análisis geotécnico han entregado herramientas para la resolución de problemas complejos, permitiendo incorporar las variaciones en los historiales de tensiones, métodos constructivos, secuencias de excavación y solicitaciones sísmicas a través de registros de aceleraciones.
Este artículo presenta un estudio comparativo de 3 métodos de análisis sísmico para un túnel NATM construido en suelos finos del noroeste de Santiago. Se describe la metodología, consideraciones particulares y los parámetros empleados en cada caso. Se indican las complejidades y los tiempos computacionales requeridos para el desarrollo de cada metodología. Finalmente, se presenta un análisis comparativo de los resultados obtenidos: esfuerzos sísmicos en revestimiento del túnel y cálculo de espesor de revestimiento.
Geometría del túnel y propiedades del suelo de fundación
La geometría del túnel se muestra en la Figura 1. La secuencia constructiva considera 3 secciones principales:side drift I, sección central, side drift II y 9 subsecciones que se enumeran en la misma figura. La metodología utilizada es acorde a los principios del método NATM (New Austrian Tunnelling Method) y simula las secuencias de excavación en tres etapas constructivas: bóveda, banco y contrabóveda; con desfase entre etapas y la aplicación de revestimiento estructural. Entre cada frente de avance de sidedrift, hay un desfase de 10 m, así también de la pared central. El nivel de riel del túnel se encuentra a una profundidad de 22 m del nivel de terreno y la clave del túnel se encuentra a 16 m de profundidad. La sección del túnel abarca un área aproximada de 190 m2.

Figura 1: a) Geometría (dimensiones en cm) y b) secuencia constructiva
del túnel
Se considera un túnel construido en el sector de suelos finos del noroeste de Santiago, al cual se le han asignado las propiedades geotécnicas presentadas en la Tabla 1. El módulo de deformación ha sido considerado lineal aumentando en profundidad, también se han considerado distintos valores de cohesión y coeficiente de empuje en reposo in situ K0 para dos distintos estratos de suelo.
Tabla 1: Propiedades de los materiales (ARCADIS, 2014)

Z: profundidad medida desde la superficie en m
Dj: profundidad sello fundación en m, B: dimensión menor de
estructura en m
Solicitación sísmica
Con el fin de simular la solicitación sísmica, se utilizan dos procedimientos: desangulación sísmica y análisis dinámico con registro de aceleraciones. Para la desangulación sísmica, la metodología empleada se basa en las recomendaciones del Manual de Carreteras (2014), que se sustentan en la propuesta de Kuesel (1969) para el diseño sísmico del metro de San Francisco. En este estudio se ha considerado una desangulación θs de 1.1·10-3rad, obtenida de los valores tabulados en el Manual de Carreteras (2014) para un rango de compresión no confinada qu entre 20 y 40 kPa, para zona sísmica con ao= 0.4g.
El análisis dinámico se basó en uno de los registros de aceleraciones del terremoto de Chile, ocurrido el 27 de Febrero del 2010, que tuvo una magnitud momento Mw de 8.8. El sismo fue subductivo tipo thrust con epicentro marítimo frente a la localidad de Cobquecura, Región del Bío Bío (Saragoni y Ruíz, 2012). El registro de aceleraciones fue obtenido de la Red Nacional de Acelerógrafos de la Universidad de Chile (RENADIC). Corresponde a un registro de superficie con componente horizontal, obtenido en una estación ubicada en Maipú, sobre depósitos de ceniza volcánica denominados comúnmente como "Pumicita". Las principales características del registro de aceleraciones se indican en la Tabla 2.
Tabla 2: Principales características sísmicas registro aceleraciones
terremoto 2010, estación Maipú (Saragoni y Ruíz, 2012)

La Figura 2 presenta las componentes de aceleraciones, velocidades y desplazamientos del registro utilizado. El registro ha sido sometido a corrección de línea de base. La Figura 3 presenta los espectros de Fourier y pseudo-aceleración para un amortiguamiento del 5%.

Figura 2: Registros de aceleración, velocidad y desplazamiento en función del tiempo.
Sismo 27F2010, estación Maipú

Figura 3: Espectro de Fourier y espectro de respuesta de aceleraciones
(5% de amortiguamiento)

miércoles, 4 de marzo de 2015

Efectos estructurales del megaterremoto de Chile

 

 

Un nuevo terremoto ocurrió en el norte Chile a las 20.46 hora local del martes 1 de abril de 2014, de magnitud 8,2 en la escala de Richter y de larga duración. Esta noticia sirve de nexo para analizar el megaterremoto que tuvo lugar en el 2010. En efecto, el Terremoto de Chile de 2010 fue un sismo ocurrido a las 03:34:08 hora local (UTC-3), del sábado 27 de febrero , que alcanzó una magnitud de 8,8 MW. El epicentro se ubicó en el Mar chileno, frente a las localidades de Curanipey Cobquecura, cerca de 150 kilómetros al noroeste de Concepción y a 63 kilómetros al suroeste de Cauquenes, y a 30,1 kilómetros de profundidad bajo la corteza terrestre. El sismo tuvo una duración de 3 minutos 25 segundos, al menos en Santiago y en algunas zonas llegando a los 6 minutos. Fue percibido en gran parte del Cono Sur con diversas intensidades, en lugares como Buenos Aires y São Paulo por el oriente.  Las víctimas llegaron a un total de 525 fallecidos. Cerca de 500 mil viviendas están con daño severo y se estiman un total de 2 millones de damnificados, en la peor tragedia natural vivida en Chile desde 1960. El sismo es considerado como el segundo más fuerte en la historia del país y el sexto más fuerte registrado por la humanidad. Sólo es superado a nivel nacional por el cataclismo del terremoto de Valdivia de 1960, el de mayor intensidad registrado por el ser humano mediante sismómetros. El sismo chileno fue 31 veces más fuerte y liberó cerca de 178 veces más energía que el devastador terremoto de Haití ocurrido el mes anterior, y la energía liberada es cercana a 100.000 bombas atómicas como la liberada en Hiroshima en 1945.

Este terremoto causó graves daños en las edificaciones del centro del país.  Se ha visto en la práctica el funcionamiento sísmico del universo de edificaciones existentes en la zona, en todos sus sistemas de estructuración, materiales y usos. En lo que compete a la Ingeniería Estructural ha sido un tiempo de aprendizaje, de observación de los distintos tipos de fallas, del comportamiento variado de los materiales y también de los defectos constructivos. Ha generado la necesidad de confeccionar un catastro de las edificaciones, basándose en su daño estructural, estudiar edificios completamente colapsados, otros que han quedado con serios problemas estructurales y aquéllos que mediante reparaciones menores, podrán seguir siendo habitados. Las edificaciones que requieran ser demolidas, precisan la realización de proyectos de ingeniería, la disposición de importantes recursos económicos y técnicos, y medidas de seguridad extremas para salvaguardar a la población. Este escenario obliga a poner en ejercicio las diferentes técnicas de reparación, de acuerdo a los distintos materiales de construcción y sobre la base de las tecnologías existentes. El objetivo planteado ha sido darles nuevamente las características de resistencia que eviten su colapso ante nuevas solicitaciones sísmicas.

A continuación os paso un vídeo realizado por la Universidad Politécnica de Madrid donde Richard Leonardo Zapata Garrido explica este terremoto y sus consecuencias desde el punto de vista ingenieril. Espero que os guste y os sea útil. video

viernes, 27 de febrero de 2015

Secuencia General de Top Down Construcción

 
Construcción de Tierra de retención Sistema stabalising (ERSS)> Instalar pilotes perforados y caída en el post rey> Construir losa de planta baja con aberturas de acceso como plataforma de trabajo. A partir de aquí, hay 2 sentidos de construcción: hacia abajo a la base (proceso de arriba hacia abajo), y hacia arriba para la construcción superestructura (construcción de abajo hacia arriba convencional).

De arriba hacia abajo Proceso: Construir principales losas hacia abajo piso por piso hasta la losa base (proceso de arriba hacia abajo)> Construir columnas internas y paredes hacia arriba desde la base hasta la losa del suelo (proceso de abajo hacia arriba cuando arriba a abajo la construcción de las principales losas completa)> Cierre las aberturas de acceso .


Construcción de un edificio de 3 sótano. De arriba hacia abajo para las losas del sótano perímetro como puntales a los muros de contención con mensajes rey. Inferior convencional para las estructuras "centrales". Proyecto: Audi Center. Contratista: Lum Chang.


Planta baja como plataforma de trabajo para la construcción de arriba hacia abajo. Proyecto: Estación Vista CCL Buona.


De arriba hacia abajo la construcción de una losa principal. Estación Paseo DTL1 C902. Contratista: Shanghai Tunnel.

Sugiere una traducción mejor


Hackeando concreto superficie para revelar acopladores para pared D. Estación Paseo DTL1 C902.

Google traductor

Secuencia General de Top Down Construcción

 
Construcción de Tierra de retención Sistema stabalising (ERSS)> Instalar pilotes perforados y caída en el post rey> Construir losa de planta baja con aberturas de acceso como plataforma de trabajo. A partir de aquí, hay 2 sentidos de construcción: hacia abajo a la base (proceso de arriba hacia abajo), y hacia arriba para la construcción superestructura (construcción de abajo hacia arriba convencional).

De arriba hacia abajo Proceso: Construir principales losas hacia abajo piso por piso hasta la losa base (proceso de arriba hacia abajo)> Construir columnas internas y paredes hacia arriba desde la base hasta la losa del suelo (proceso de abajo hacia arriba cuando arriba a abajo la construcción de las principales losas completa)> Cierre las aberturas de acceso .


Construcción de un edificio de 3 sótano. De arriba hacia abajo para las losas del sótano perímetro como puntales a los muros de contención con mensajes rey. Inferior convencional para las estructuras "centrales". Proyecto: Audi Center. Contratista: Lum Chang.


Planta baja como plataforma de trabajo para la construcción de arriba hacia abajo. Proyecto: Estación Vista CCL Buona.


De arriba hacia abajo la construcción de una losa principal. Estación Paseo DTL1 C902. Contratista: Shanghai Tunnel.

Sugiere una traducción mejor


Hackeando concreto superficie para revelar acopladores para pared D. Estación Paseo DTL1 C902.

Google traductor